Venturi nozzle
 (ISO 5167-1:1991)

Model description:

This model of component determines the fluid flow through a Venturi nozzle flowmeter, according to the international standard "ISO-5167-1:1991".

Model formulation:

Diameter ratio:

$$
\beta=\frac{d}{D}
$$

Orifice cross-sectional area $\left(m^{2}\right)$:

$$
s=\pi \cdot \frac{d^{2}}{4}
$$

Pipe cross-sectional area $\left(m^{2}\right)$:

$$
S=\pi \cdot \frac{D^{2}}{4}
$$

Mean velocity in orifice (m / s):

$$
v=\frac{q_{v}}{s}
$$

Mean velocity in pipe (m / s):

$$
V=\frac{q_{v}}{S}
$$

Reynolds number referred to orifice diameter:

$$
\operatorname{Re}_{d}=\frac{v \cdot d}{v}
$$

Reynolds number referred to internal pipe diameter:

$$
\operatorname{Re}_{D}=\frac{V \cdot D}{v}
$$

Discharge coefficient:

$$
C=0.9858-0.196 \cdot \beta^{4.5} \quad([1] \S 10.2 .4 .2)
$$

Venturi nozzle - ISO-5167-1:1991 Discharge coefficient

Expansibility factor:

$$
\varepsilon=1 \quad([1] ~ \S 3.3 .5) \text { for incompressible fluid (liquid) }
$$

Mass flow rate (kg/s):

$$
q_{m}=\frac{C}{\sqrt{1-\beta^{4}}} \cdot \varepsilon \cdot \frac{\pi}{4} \cdot d^{2} \cdot \sqrt{2 \cdot \Delta p \cdot \rho}
$$

Volume flow rate ($\mathrm{m}^{3} / \mathrm{s}$):

$$
q_{v}=\frac{q_{m}}{\rho}
$$

([1] §5.1 eq. 3)

Velocity of approach factor:

$$
C_{v}=\frac{1}{\sqrt{1-\beta^{4}}}
$$

Flow coefficient:

$$
C_{f}=C \cdot \frac{1}{\sqrt{1-\beta^{4}}}
$$

([1] \$3.3.4)
Venturi nozzle - ISO-5167-1:1991
Flow coefficient

Net pressure loss (Pa):
The net pressure loss is not formulated in the reference document [1]
Measured head loss (m):

$$
\Delta H=\frac{\Delta P}{\rho \cdot g}
$$

Symbols, Definitions, SI Units:
d \quad Orifice diameter (m)
$D \quad$ Internal pipe diameter (m)
$\beta \quad$ Diameter ratio ()
$s \quad$ Orifice cross-sectional area (m^{2})
$S \quad$ Pipe cross-sectional area (m^{2})
$q_{v} \quad$ Volume flow rate ($\mathrm{m}^{3} / \mathrm{s}$)
$v \quad$ Mean velocity in orifice (m / s)
$V \quad$ Mean velocity in pipe (m / s)
Red Reynolds number referred to orifice ()
Red Reynolds number referred to pipe ()
C Discharge coefficient ()
$\varepsilon \quad$ Expansibility factor ()
$q_{m} \quad$ Mass flow rate (kg / s)
$C_{v} \quad$ Velocity of approach factor ()
$C_{f} \quad$ Flow coefficient ()
$\Delta \mathrm{P} \quad$ Measured pressure loss (Pa)
$\Delta H \quad$ Measured head loss of fluid (m)
$\rho \quad$ Fluid density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
$v \quad$ Fluid kinematic viscosity ($\mathrm{m}^{2} / \mathrm{s}$)
$9 \quad$ Gravitational acceleration ($\mathrm{m} / \mathrm{s}^{2}$)
Limit of use ([1] §10.2.4.1):

- $65 \mathrm{~mm} \leq \mathrm{D} \leq 500 \mathrm{~mm}$
- $d \geq 50 \mathrm{~mm}$
- $0.316 \leq \beta \leq 0.775$
- $1.5 \cdot 10^{5} \leq \operatorname{ReD} \leq 2 \cdot 10^{6}$

Example of application:

Fluid characteristics
Fluid: Water @ 1 atm [HC] Ref.: IAPWS IF97

. $\mathrm{kg} / \mathrm{m}^{3}$ Dynamic Viscosity: $\mu \quad 0.00100159 \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2}$ Kinematic Viscosity : v $1.00340 \mathrm{E}-06 \mathrm{~m}^{2} / \mathrm{s}$
© Density \bigcirc Dyn. Visc. \bigcirc Kin. Visc.

Divers

Measured differential pressure | $\Delta \mathrm{P}$ |
| :--- |
| |

Calculate

Complementary results

Designation	Symbol	Value	Unit
Pipe cross-section area	S	0.003881508	m^{2}
Orifice cross-section area	s	0.0009621127	m^{2}
Diameters ratio	β	0.4978663	
Cross-sections area ratio	s/S	0.2478708	
Pipe Reynolds number	ReD	175346.1	
Orifice Reynolds number	Red	352195.2	
Discharge coefficient	C	0.977303	
Expansibility factor	ε	1	
Velocity of approach factor	Cv	1.032212	
Flow coefficient	Cf	1.008784	

References:

[1] ISO 5167-1:1991 - Measurement of fluid flow by means of pressure differential devices

HydrauCalc

Edition: January 2021
© François Corre 2021

