

Helical Tube (Coil) Circular Cross-Section (MILLER)

Model description:

This model of component calculates the head loss (pressure drop) of a helical tube whose cross-section is circular and constant. In addition, the flow is assumed fully developed and stabilized upstream of the helical tube.

Model formulation:

Cross-section area (m²):
$$A = \pi \cdot \frac{d_i^2}{4}$$

Mean velocity (m/s):

$$U = \frac{\mathsf{Q}}{\mathsf{A}}$$

Length measured along the axis (m):

$$\mathsf{L} = n \cdot \sqrt{\left(\pi \cdot D\right)^2 + P^2}$$

Mass flow rate (kg/s):

$$G = Q \cdot \rho$$

Fluid volume (m³):

 $V = A \cdot L$

Fluid mass (kg):

$$\mathsf{M} = \mathsf{V} \cdot \rho$$

Reynolds number:

$$\mathsf{Re} = \frac{U \cdot d_i}{v}$$

Local resistance coefficient:

(with d_i =0.05 m and Re=10⁵)

$$K_{lam} = f(K_{turb}, \text{Re}_1)$$
 ([1] figure 14.31)

where:

 K_{turb} is the local resistance coefficient in turbulent regime (K_b for $Re = 10^4$ - equation 9.8)

Total pressure loss coefficient (based on the mean velocity in the helical tube)

■ turbulent flow (Re ≥ 10⁴):
$$K = K_b$$

$$K = K_{lam}$$

Total pressure loss (Pa):

$$\Delta P = K \cdot \frac{\rho \cdot U^2}{2} \quad ([1] \text{ equation 8.1b})$$

Total head loss of fluid (m):

$$\Delta H = K \cdot \frac{U^2}{2 \cdot g}$$

([1] equation 8.1a)

Hydraulic power loss (W):

$$Wh = \Delta P \cdot Q$$

Darcy friction factor:

$$f = f\left(\operatorname{Re}, \frac{k}{d_i}\right)$$

with: k = 0 (hydraulically smooth tube)

See Straight Pipe - Circular Cross-Section and Roughness Walls (MILLER)

Straight length of equivalent pressure loss (m):

$$L_{eq} = K \cdot rac{d_i}{f}$$

Symbols, Definitions, SI Units:

di	Helical	tube	internal	diameter	(m)
u,	riencui	TUDE	menu	ulumerer	(m)

- A Cross-section area (m²)
- Q Volume flow rate (m³/s)
- U Mean velocity (m/s)
- P Pitch of the helical tube (m)
- n Number of turns constituting the helical tube ()
- L Length measured along the axis (m)
- D Diameter of curvature of the helical tube (m)
- G Mass flow rate (kg/s)
- V Fluid volume (m³)
- M Fluid mass (kg)
- Re Reynolds number ()
- K_b Local resistance coefficient for $Re = 10^4$ ()
- K_{lam} Local resistance coefficient for Re < 10⁴ ()
- K Total pressure loss coefficient (based on the mean velocity in the helical tube) ()
- ΔP Total pressure loss (Pa)
- ΔH Total head loss of fluid (m)
- Wh Hydraulic power loss (W)
- f Darcy friction factor ()
- L_{eq} Straight length of equivalent pressure loss (m)
- ρ Fluid density (kg/m³)
- v Fluid kinematic viscosity (m^2/s)

g Gravitational acceleration (m/s²)

Validity range:

- any flow regime: laminar and turbulent
 - note: for laminar flow regime (Re < 10⁴), the pressure loss coefficient "K_{lam}" is estimated
- hydraulically smooth flow
- stabilized flow upstream helical tube

Example of application:

References:

[1] Internal Flow System, Second Edition, D.S. Miller

HydrauCalc © François Corre 2021 Edition: January 2021