

Pump Design Suction head operation (Free flow from the pipe ending above the fluid level)

Model description:

This component model calculates the Total Dynamic Height (TDH) of a pump installed in a hydraulic installation. There is also an option to calculate the Net Positive Suction Head available (NPSHa) of the installation.

In this model.

- the pump is operating in head mode (the level of the suction tank is located above the suction flange of the pump),
- the pump delivers into a tank whose pipe outlet is located above the fluid level of this tank and whose level is located above the pump discharge flange.

Model formulation:

Mass flow rate (kg/s):

$$G = Q \cdot \rho$$

Cross-sectional area (m2):

■ Suction piping:

$$A_1 = \pi \cdot \frac{D_1^2}{4}$$

■ Discharge piping:

$$A_2 = \pi \cdot \frac{D_2^2}{4}$$

Mean velocity (m/s):

■ Surface of the suction tank:

$$V_0 \approx 0$$

■ Suction piping:

$$V_1 = \frac{Q}{A_1}$$

■ Discharge piping:

$$V_2 = \frac{Q}{A_2}$$

■ Outlet of the discharge pipe:

$$V_3 = V_2$$

Reynolds number:

■ Suction piping:

$$Re_1 = \frac{v_1 \cdot D_1}{v}$$

■ Discharge piping:

$$Re_2 = \frac{v_2 \cdot D_2}{v}$$

Darcy friction factor:

■ Suction piping:

$$f_1 = f\left(\text{Re}_1, \frac{r_1}{D_1}\right)$$

■ Discharge piping:

$$f_2 = f\left(\text{Re}_2, \frac{r_2}{D_2}\right)$$

See <u>Straight Pipe - Circular Cross-Section and Nonuniform Roughness Walls</u> (<u>IDELCHIK</u>)

Coefficient of major pressure losses (friction in pipes):

■ Suction piping:

$$Kf_1 = f_1 \cdot \frac{L_1}{D_1}$$

■ Discharge piping:

$$Kf_2 = f_2 \cdot \frac{L_2}{D_2}$$

Total pressure loss coefficient:

■ Suction piping:

$$K_1 = Kf_1 + Ks_1$$

■ Discharge piping:

$$K_2 = Kf_2 + Ks_1$$

Total pressure loss (Pa):

■ Suction piping:

$$dP_{01} = K_1 \cdot \frac{\rho \cdot V_1^2}{2}$$

■ Discharge piping:

$$dP_{23} = K_2 \cdot \frac{\rho \cdot V_2^2}{2}$$

Total head loss (m):

■ Suction piping:

$$dH_{01} = K_1 \cdot \frac{{V_1}^2}{2 \cdot g}$$

■ Discharge piping:

$$dH_{23} = K_2 \cdot \frac{V_2^2}{2 \cdot g}$$

Total gage pressure at the suction flange (Pa):

$$P_{1} = P_{0} + \frac{{v_{0}}^{2} \cdot \rho}{2} + (H_{0} - dH_{01}) \cdot \rho \cdot g$$

Total gage pressure at the discharge flange (Pa):

$$P_2 = P_3 + \frac{{V_3}^2 \cdot \rho}{2} + (dH_{23} + H_3) \cdot \rho \cdot g$$

Bernoulli's equation:

$$P_i + \frac{1}{2} \cdot \rho \cdot V_i^2 + \rho \cdot g \cdot z_i = P_o + \frac{1}{2} \cdot \rho \cdot V_o^2 + \rho \cdot g \cdot z_o$$

(Perfect fluid, incompressible, steady state flow)

Illustration of Bernoulli's theorem

Pump Total Dynamic Head (application of the extended Bernoulli equation for a real fluid):

$$HMT = (H_3 - H_0) + \left(\frac{P_3 - P_0}{\rho \cdot g}\right) + \left(\frac{{v_3}^2 - {v_0}^2}{2 \cdot g}\right) + \left(dH_{01} + dH_{23}\right)$$
([1] equation 5)

Illustration of the system

where:

 $H_3 - H_0$

Total static head, this is the difference in height between the liquid level in the suction tank and the center of the exit plane (geodetic head).

 $\frac{P_3 - P_0}{\rho \cdot g}$

Static pressure head, this is the pressure head difference between the inlet and outlet tank.

In the case of open boxes at atmospheric pressure, the pressures P_0 and P_3 are equal and the static pressure head is zero.

$$\frac{{v_3}^2-{v_0}^2}{2\cdot g}$$

Dynamic head, this is the dynamic height due to the vertical speed difference in the two tanks.

In general, the liquid surface flow velocities v_0 and v_3 of tanks are very low and the dynamic head is considered to be zero (negligible).

$$dH_{01} + dH_{23}$$

Pressure loss head, this is the sum of all the head losses of the installation, suction and discharge piping.

(= resistance to flow in the pipes, valves, strainer, piping inlet and outlet, etc.).

NPSH Available of the system:

$$NPSH_a = P_1 - P_{vap}$$

By applying the extended Bernoulli equation for a real fluid, between the tank level and the pump suction flange, we obtain the following equation:

$$NPSH_{a} = \frac{P_{0} + P_{atm} - P_{vap}}{\rho \cdot g} + \frac{{v_{0}}^{2}}{2 \cdot g} - dH_{01} + H_{0}$$
 ([1] equation 31)

where (as for the TDH):

$$\frac{P_{0} + P_{atm} - P_{vap}}{\rho \cdot g}$$

Static pressure head.

$$\frac{{v_0}^2}{2 \cdot g}$$

Dynamic head.

Pressure loss head.

Total static head.

Hydraulic power supplied to the fluid by the pump (W):

$$Wh = TDH \cdot \rho \cdot g \cdot Q$$

Input mechanical power taken by the pump (W):

$$Wm = \frac{Wh}{\eta p}$$

Note: Pumping media which are more viscous than water will require a higher input power.

Electric power absorbed by the electric motor (W):

```
We = \frac{Wm}{\eta m}
```

Symbols, Definitions, SI Units:

- Q Volume flow rate (m³/s)
- G Mass flow rate (kg/s)
- D₁ Suction piping diameter (m)
- D₂ Discharge piping diameter (m)
- A₁ Suction piping cross-sectional area (m²)
- A₂ Discharge piping cross-sectional area (m²)
- v_0 Flow velocity of the liquid surface of the suction tank (m/s)
- v_1 Mean velocity in suction piping (m/s)
- v₂ Mean velocity in discharge piping (m/s)
- v_3 Flow velocity at the outlet of the discharge pipe (m/s)
- Re₁ Reynolds number in suction piping ()
- Re₂ Reynolds number in discharge piping ()
- r₁ Suction piping absolute roughness (m)
- r₂ Discharge piping absolute roughness (m)
- f_1 Darcy friction factor of the suction piping ()
- f₂ Darcy friction factor of the discharge piping ()
- L₁ Length of the suction pipe (m)
- L₂ Length of the discharge pipe (m)
- Kf₁ Coefficient of friction resistance of the suction piping ()
- Kf₂ Coefficient of friction resistance of the discharge piping ()
- Ks₁ Resistance coefficient of the singularities of the suction piping ()
- Ks₂ Resistance coefficient of the singularities of the discharge piping ()
- K_1 Total pressure loss coefficient of the suction piping ()
- K₂ Total pressure loss coefficient of the discharge piping ()
- dP₀₁ Total pressure loss of the suction piping (Pa)
- dP₂₃ Total pressure loss of the discharge piping (Pa)
- dH_{01} Total head loss of the suction piping (Pa)
- dH₂₃ Total head loss of the discharge piping (Pa)
- Po Relative pressure on the surface of the suction tank (Pa)
- P₁ Total relative pressure at the suction flange (Pa)
- P₂ Total relative pressure at the discharge flange (Pa)
- P₃ Relative pressure on the surface of the discharge tank (Pa)
- H_1 Height difference between the fluid level of the suction tank and the
 - suction flange (m)
- H₃ Height difference between the suction flange and the center of the exit plane (m)
- TDH Pump Total Dynamic Head (m)
- P_{atm} Atmospheric pressure (Pa)
- P_{vap} Vapour pressure of liquid at suction flange temperature (Pa)
- NPSH_a Net Positive Suction Head available of the system (m)
- Wh Hydraulic power supplied to the fluid by the pump (W)
- ηp Pump efficiency ()
- Wm Input mechanical power taken by the pump (W)

- ηm Electrical motor efficiency ()
- We Electric power absorbed by the electric motor (W)
- ρ Fluid density (kg/m³)
- v Fluid kinematic viscosity (m²/s)
- g Gravitational acceleration (9.80665 m/s²)

Validity range:

• turbulent flow regime

Example of application:

References:

[1] KSB - Selecting Centrifugal Pumps - 4th Edition (2005)

HydrauCalc Edition: May 2020

© François Corre 2020