Globe valve

(MILLER)

Model description:

This model of component calculates the minor head loss (pressure drop) generated by the flow in a globe valve installed in a straight pipe.

Model formulation:

Cross-sectional area at valve inlet (m^{2}):
$\mathrm{A}=\pi \cdot \frac{D^{2}}{4}$

Mean velocity (m / s):

$$
U=\frac{Q}{A}
$$

Mass flow rate (kg / s):

$$
G=Q \cdot \rho
$$

Reynolds number:

$$
\operatorname{Re}=\frac{U \cdot D}{v}
$$

Local resistance coefficient:

- $R e \geq 10^{4}$ (turbulent flow)

$$
K_{\text {turb }}=f(\alpha)
$$

- $\operatorname{Re}<10^{4}$ (laminar flow)

$$
K_{\text {lam }}=f\left(K_{\text {turb }}, \mathrm{Re}\right)
$$

([1] figure 14.31)

Laminar loss coefficient relationship to turbulent loss coefficient MILLER - Figure 14.31 ($\mathrm{Re}<1 \mathrm{e} 4$)

Reynolds Number Correction ($\operatorname{Re}<10^{4}$):

$$
C_{\mathrm{Re}}=\frac{K_{\text {lam }}}{K_{\text {turb }}}
$$

Total pressure loss coefficient (based on mean velocity):

- turbulent flow ($\operatorname{Re} \geq 10^{4}$):

$$
K=K_{\text {turb }}
$$

- laminar flow ($\mathrm{Re}<10^{4}$):
$K=K_{\text {lam }}$

Total pressure loss (Pa):
$\Delta P=K \cdot \frac{\rho \cdot U^{2}}{2}$

Total head loss of fluid (m):
$\Delta H=K \cdot \frac{U^{2}}{2 \cdot g}$

Hydraulic power loss (W):

$$
W h=\Delta P \cdot Q
$$

Symbols, Definitions, SI Units:
$D \quad$ Internal diameter (m)
A Cross-sectional area (m^{2})
Q Volume flow rate ($\mathrm{m}^{3} / \mathrm{s}$)
$G \quad$ Mass flow rate (kg/s)
$U \quad$ Mean velocity (m / s)
Re Reynolds number ()
st Opening stroke of the valve (\%)
Kturb Local resistance coefficient for $\operatorname{Re} \geq 10^{4}$ ()
Klam Local resistance coefficient for $\operatorname{Re}<10^{4}$ ()
$C_{\operatorname{Re}} \quad$ Reynolds number correction for $\mathrm{Re}<10^{4}$ ()
$K \quad$ Total pressure loss coefficient (based on mean velocity) ()
$\Delta \mathrm{P} \quad$ Total pressure loss (Pa)
$\Delta H \quad$ Total head loss of fluid (m)
Wh Hydraulic power loss (W)
$\rho \quad$ Fluid density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
$v \quad$ Fluid kinematic viscosity ($\mathrm{m}^{2} / \mathrm{s}$)
$9 \quad$ Gravitational acceleration $\left(\mathrm{m} / \mathrm{s}^{2}\right)$

Validity range:

- any flow regime: laminar and turbulent
note: for laminar flow regime $\left(\operatorname{Re}<10^{4}\right)$, the pressure loss coefficient "Klam" is estimated

Example of application:
Fluid characteristics
Fluid: \quad Water @ $1 \mathrm{~atm}[\mathrm{HC}]$

Ref.: IAPWS IF97

Ref.: IAPWS IF97

Pressure:

Density:	ρ	998.2061	$\mathrm{~kg} / \mathrm{m}^{3}$
Dynamic Viscosity:	μ	0.00100159	$\mathrm{~N} . \mathrm{s} / \mathrm{m}^{2}$
Kinematic Viscosity:	v	$1.00340 \mathrm{E}-06$	$\mathrm{~m}^{2} / \mathrm{s}$

(Density \bigcirc Dyn. Visc. Kin. Visc.

8
$\square \log Y$

Divers

Complementary results

Designation	Symbol	Value	Unit
Pipe cross-section area	A	0.003881508	m^{2}
Reynolds number	Re	90251	
Coefficient of local resistance (Figure 14.24)	Kturb	3.9632	
Pressure loss coefficient (based on the mean valve velocity)	K	3.9632	
Hydraulic power loss	Wh	16.41138	w

References:

[1] Internal Flow System, Second Edition, D.S. Miller

HydrauCalc

Edition: May 2020
© François Corre 2020

