

Grille à bord arrondis Section circulaire (IDELCHIK)

Description du modèle :

Ce modèle de composant calcule la perte de charge singulière (chute de pression) générée par l'écoulement dans une grille (plaque perforée) à bords arrondis installé dans un tuyau droit.

La perte de charge par frottement dans la tuyauterie d'entrée et de sortie n'est pas prise en compte dans ce composant.

Formulation du modèle :

Diamètre hydraulique (m):

$$D_h = D_0$$

Section transversale de passage du tuyau (m²):

$$F_1 = \pi \cdot \frac{D_1^2}{4}$$

Section transversale de passage d'un trou (m²):

$$f_0 = \pi \cdot \frac{{D_0}^2}{4}$$

Section transversale de passage de la grille (m²):

$$F_0 = f_0 \cdot N$$

Vitesse moyenne d'écoulement dans le tuyau (m/s) :

$$W_1 = \frac{Q}{F_1}$$

Vitesse moyenne d'écoulement dans les trous (m/s) :

$$W_0 = \frac{Q}{F_0}$$

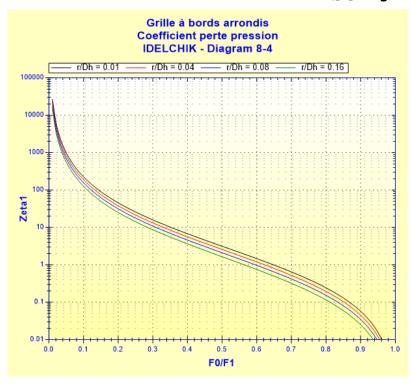
Débit massique (kg/s):

$$G = Q \cdot \rho$$

Nombre de Reynolds dans le tuyau :

$$Re_1 = \frac{w_1 \cdot D_1}{v}$$

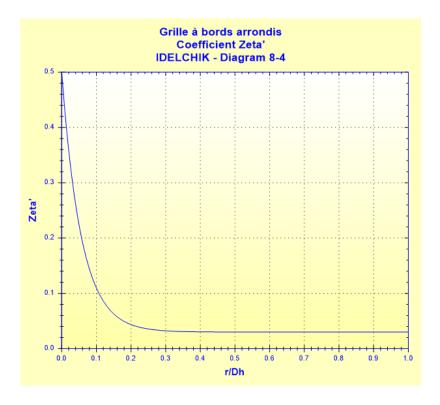
Nombre de Reynolds dans les trous :


$$\mathsf{Re}_0 = \frac{w_0 \cdot D_0}{v}$$

Coefficient de résistance locale :

■ Re₀ \geq 10⁵

$$\zeta_1 = \left[\sqrt{\zeta'} \cdot \left(1 - \frac{F_0}{F_1}\right)^{0.75} + \left(1 - \frac{F_0}{F_1}\right)\right]^2 \cdot \left(\frac{F_1}{F_0}\right)^2$$


([1] diagramme 8-4)

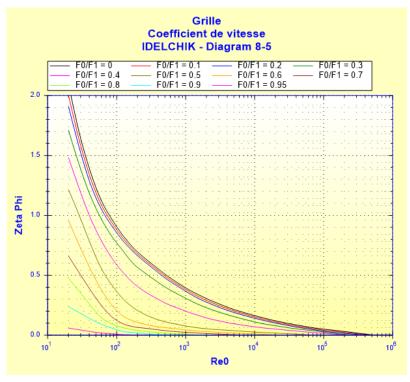
avec:

Coefficient d'effet de l'arrondi :

$$\zeta' = 0.03 + 0.47 \cdot 10^{-7.7 \cdot \frac{r}{D_h}}$$
 ([1] diagramme 8-4)

 $\blacksquare \ \text{Re}_0 < 10^5$

Coefficient de résistance locale quadratique :


$$\zeta_{1quad} = \left[\sqrt{\zeta'} \cdot \left(1 - \frac{F_0}{F_1} \right)^{0.75} + \left(1 - \frac{F_0}{F_1} \right) \right]^2 \cdot \left(\frac{F_1}{F_0} \right)^2$$

([1] diagramme 8-4)

Coefficient de vitesse :

$$\zeta_{\varphi} = f\left(\text{Re}_0, \frac{F_0}{F_1}\right)$$

([1] diagramme 8-5)

Coefficient de contraction :

$$\overline{\bar{\varepsilon}_{0Re}} = f(Re_0)$$
 ([1] diagramme 8-5)

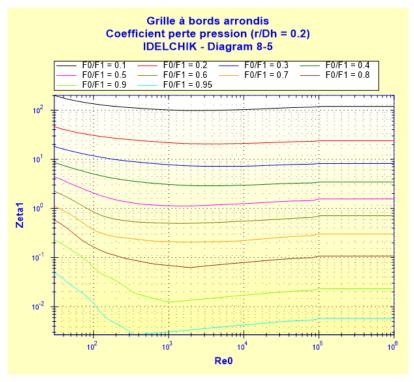
Coefficient de résistance locale :

 $\bullet \quad 30 < Re_0 < 10^5$

$$\zeta_1 = \zeta_{\varphi} \cdot \left(\frac{F_1}{F_0}\right)^2 + \overline{\varepsilon}_{0Re} \cdot \zeta_{1quad}$$

([1] diagramme 8-5)

• $10 < Re_0 \le 30$


$$\zeta_1 = \frac{33}{\text{Re}_0} \cdot \left(\frac{F_1}{F_0}\right)^2 + \overline{\varepsilon}_{0\text{Re}} \cdot \zeta_{1\text{quad}}$$

([1] diagramme 8-5)

• $Re_0 \le 10$

$$\zeta_1 = \frac{33}{\text{Re}_0} \cdot \left(\frac{F_1}{F_0}\right)^2$$

([1] diagramme 8-5)

([1] diagramme 8-5

avec r/Dh = 0,2)

Coefficient de perte de pression (basé sur la vitesse moyenne dans le tuyau) :

$$\zeta = \zeta_1$$

Perte de pression totale (Pa):

$$\Delta P = \zeta \cdot \frac{\rho \cdot W_1^2}{2}$$

Perte de charge totale de fluide (m):

$$\Delta H = \zeta \cdot \frac{{w_1}^2}{2 \cdot g}$$

Perte de puissance hydraulique (W):

$$Wh = \Delta P \cdot Q$$

Symboles, définitions, unités SI :

Dh Diamètre hydraulique (m)

D₁ Diamètre intérieur du tuyau (m)

 F_1 Section transversale de passage du tuyau (m^2)

N Nombre de trous ()

Do Diamètre des trous (m)

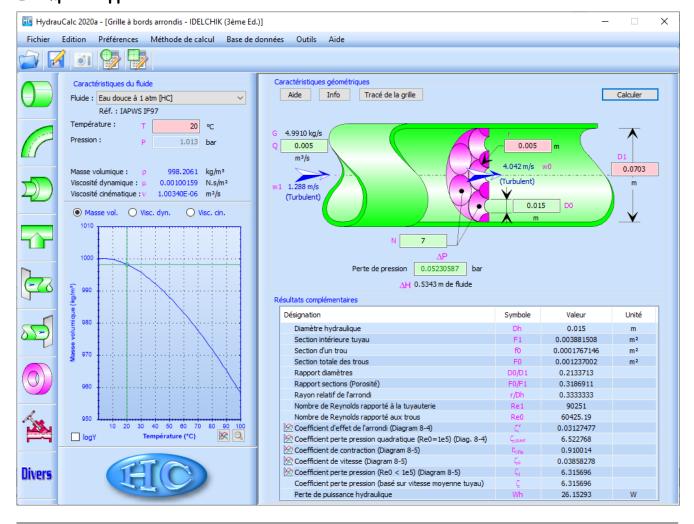
 F_0 Section transversale de passage de la grille (m²)

fo Section transversale de passage d'un trou (m²)

Q Débit volumique (m³/s)

 w_1 Vitesse moyenne d'écoulement dans le tuyau (m/s)

wo Vitesse moyenne d'écoulement dans les trous (m/s)


G Débit massique (kg/s)

Rayon de l'arrondi (m) Nombre de Reynolds dans le tuyau () Re₁ Re₀ Nombre de Reynolds dans les trous () Coefficient de perte de pression quadratique déterminé pour Re₀ = 10⁵ () ζ_{1} guad Coefficient de vitesse () ζ_{φ} Coefficient de contraction () E0Re ζ_1 Coefficient de résistance locale () Coefficient de perte de pression (basé sur la vitesse moyenne dans le tuyau) () ΛP Perte de pression totale (Pa) ΔH Perte de charge totale de fluide (m) Wh Perte de puissance hydraulique (W) Masse volumique du fluide (kg/m³) ρ Viscosité cinématique du fluide (m²/s) ν Accélération de la pesanteur (m/s^2) 9

Domaine de validité :

- tout régime d'écoulement : laminaire et turbulent
- écoulement stabilisé en amont de la grille

Exemple d'application :

Références :

HydrauCalc Edition: janvier 2020

© François Corre 2019-2020