Round-Edged Orifice (with Transition) Circular Cross-Section (Pipe Flow - Guide)

Model description:

This model of component calculates the minor head loss (pressure drop) generated by the flow in a round-edged orifice installed in a straight pipe with transition.

The head loss by friction in the inlet and outlet piping is not taken into account in this component.

Model formulation:

Ratio of orifice to major pipe diameters:

$$
\beta=\frac{d_{0}}{d_{1}}
$$

Major pipe cross-sectional area $\left(m^{2}\right)$:

$$
\mathrm{A}_{1}=\pi \cdot \frac{d_{1}^{2}}{4}
$$

Minor pipe cross-sectional area $\left(m^{2}\right)$:

$$
\mathrm{A}_{2}=\pi \cdot \frac{d_{2}^{2}}{4}
$$

Orifice cross-sectional area $\left(m^{2}\right)$:
$A_{o}=\pi \cdot \frac{d_{0}{ }^{2}}{4}$

Major pipe velocity (m / s):

$$
V_{1}=\frac{Q}{A_{1}}
$$

Minor pipe velocity (m / s):

Orifice velocity (m / s):

$$
V_{o}=\frac{Q}{A_{0}}
$$

Mass flow rate (kg/s):

$$
G=Q \cdot \rho_{m}
$$

Reynolds number in major pipe:

$$
N_{\mathrm{Re} 1}=\frac{V_{1} \cdot d_{1}}{v}
$$

Reynolds number in minor pipe:

$$
N_{\text {Re } 2}=\frac{V_{2} \cdot d_{2}}{v}
$$

Reynolds number in orifice:

$$
N_{\mathrm{Re}_{o}}=\frac{V_{0} \cdot d_{0}}{v}
$$

Jet velocity ratio:
■ $\mathrm{r} / \mathrm{d}_{0} \leq 1$

$$
\lambda=1+0.622 \cdot\left[1-0.3 \cdot \sqrt{\frac{r}{d_{0}}}-0.7 \cdot \frac{r}{d_{0}}\right]^{4} \cdot\left(1-0.215 \cdot \beta^{2}-0.785 \cdot \beta^{5}\right)
$$

■ $\mathrm{r} / \mathrm{d}_{0}>1$
$\lambda=1 \quad([1] \S 13.3 .1)$
Velocity in vena contracta:

$$
V_{c}=V_{0} \cdot \lambda
$$

Coefficient of local resistance:

■ $\mathrm{r} / \mathrm{d}_{0} \leq 1$

$$
\mathrm{K}_{0}=0.0696 \cdot\left(1-0.569 \cdot \frac{r}{d_{0}}\right) \cdot\left(1-\sqrt{\frac{r}{d_{0}}} \cdot \beta\right) \cdot\left(1-\beta^{5}\right) \cdot \lambda^{2}+\left[\lambda-\left(\frac{d_{0}}{d_{2}}\right)^{2}\right]^{2}
$$

13.8)

(with $d_{0} / d_{2}=0.5$)

(with $\mathrm{r} / \mathrm{d}_{0}=0.1$)

■ $\mathrm{r} / \mathrm{d}_{0}>1$

$$
\begin{equation*}
\mathrm{K}_{\mathrm{o}}=0.03 \cdot(1-\beta) \cdot\left(1-\beta^{5}\right)+\left[1-\left(\frac{d_{0}}{d_{2}}\right)^{2}\right]^{2} \tag{1}
\end{equation*}
$$

Round-edged orifice (with transition)
Coefficient of local resistance (r/do >1)
Pipe Flow - Guide (2012) - §13.3.2

Total pressure loss coefficient (based on the major pipe velocity):
$K=K_{o} \cdot\left(\frac{A_{1}}{A_{o}}\right)^{2}$
r $/ \mathrm{d}_{0} \leq 1$

(with $d_{0} / d_{2}=0.5$)

■ $r / d_{0}>1$

Round-edged orifice (with transition)
Coefficient of local resistance ($\mathrm{r} / \mathrm{do}>1$) Pipe Flow - Guide (2012)

Total pressure loss (Pa):

$$
\Delta P=K \cdot \frac{\rho_{m} \cdot V_{1}^{2}}{2}
$$

Total head loss of fluid (m):

$$
\Delta H=K \cdot \frac{V_{1}^{2}}{2 \cdot g}
$$

$$
W h=\Delta P \cdot Q
$$

Symbols, Definitions, SI Units:
do Orifice diameter (m)
$d_{1} \quad$ Internal major pipe diameter (m)
$d_{2} \quad$ Internal minor pipe diameter (m)
$\beta \quad$ Ratio of orifice to major pipe diameters ()
$A_{0} \quad$ Orifice cross-sectional area (m^{2})
$A_{1} \quad$ Major pipe cross-sectional area (m^{2})
$A_{2} \quad$ Minor pipe cross-sectional area (m^{2})
Q Volume flow rate ($\mathrm{m}^{3} / \mathrm{s}$)
$G \quad$ Mass flow rate (kg / s)
Vo Mean velocity in orifice (m / s)
$V_{1} \quad$ Mean velocity in major pipe $(\mathrm{m} / \mathrm{s})$
$V_{2} \quad$ Mean velocity in minor pipe (m / s)
NRe。 Reynolds number in orifice ()
$\mathrm{NRe}_{1} \quad$ Reynolds number in major pipe ()
NRe_{2} Reynolds number in minor pipe ()
$r \quad$ Radius of the round (m)
$\lambda \quad$ Jet velocity ratio ()
$V_{c} \quad$ Mean velocity in vena contracta (m / s)
$K_{0} \quad$ Coefficient of local resistance ()
$K \quad$ Total pressure loss coefficient (based on the major pipe velocity) ()
$\Delta \mathrm{P} \quad$ Total pressure loss (Pa)
$\Delta H \quad$ Total head loss of fluid (m)
Wh Hydraulic power loss (W)
$\rho_{m} \quad$ Fluid density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
$v \quad$ Fluid kinematic viscosity ($\mathrm{m}^{2} / \mathrm{s}$)
$9 \quad$ Gravitational acceleration ($\mathrm{m} / \mathrm{s}^{2}$)

Validity range:

- turbulent flow regime in orifice ($N \operatorname{Re}_{0} \geq 10^{4}$)
- stabilized flow upstream of the orifice
- round radius less than the radius difference ($r<\left(d_{1} / 2-d_{0} / 2\right)$)

Example of application:

References:
[1] Pipe Flow: A Practical and Comprehensive Guide. Donald C. Rennels and Hobart M. Hudson. (2012)

HydrauCalc

Edition: May 2020
© François Corre 2020

