www.hydraucalc.com

Bevelled-Edged Orifice Circular Cross-Section (Pipe Flow - Guide)

Model description:

This model of component calculates the minor head loss (pressure drop) generated by the flow in a bevelled-edged orifice installed in a straight pipe.

The head loss by friction in the inlet and outlet piping is not taken into account in this component.

Model formulation:

Ratio of orifice to pipe diameters:

$$\beta = \frac{d_0}{d}$$

Pipe cross-sectional area (m^2) :

$$A = \pi \cdot \frac{d^2}{4}$$

Orifice cross-sectional area (m2):

$$A_o = \pi \cdot \frac{{d_o}^2}{4}$$

Pipe velocity (m/s):

$$V = \frac{Q}{A}$$

Orifice velocity (m/s):

$$V_o = \frac{Q}{A_o}$$

Mass flow rate (kg/s):

$$G = Q \cdot \rho_m$$

Reynolds number in pipe:

$$N_{\text{Re}} = \frac{V \cdot d}{v}$$

Reynolds number in orifice:

$$N_{\text{Re}_O} = \frac{V_O \cdot d_O}{V}$$

Jet velocity ratio:

$$\lambda = 1 + 0.622 \cdot \left[1 - C_b \cdot \left(\frac{I}{d_0} \right)^{\frac{1 - \sqrt[4]{I/d_0}}{2}} \right] \cdot \left(1 - 0.215 \cdot \beta^2 - 0.785 \cdot \beta^5 \right)$$

([1] equation 13.10)

with:

Coefficient of effect of the bevel angle:

$$C_b = \left(1 - \frac{\Psi}{90}\right) \cdot \left(\frac{\Psi}{90}\right)^{\frac{1}{2+l/d_0}}$$
 ([1] equation 13.11)

Velocity in vena contracta:

$$V_c = V_0 \cdot \lambda$$

Coefficient of local resistance (NRe₀ \geq 10⁴):

$$K_{o} = 0.0696 \cdot \left(1 - C_{b} \cdot \frac{I}{d_{o}}\right) \cdot \left(1 - 0.42 \cdot \sqrt{\frac{I}{d_{o}}} \cdot \beta^{2}\right) \cdot \left(1 - \beta^{5}\right) \cdot \lambda^{2} + \left(\lambda - \beta^{2}\right)^{2}$$

([1] equation 13.9)

(with $\psi = 30^{\circ}$)

Total pressure loss coefficient (based on the mean pipe velocity):

$$K = K_o \cdot \left(\frac{A}{A_o}\right)^2$$

(with $\psi = 30^{\circ}$)

Total pressure loss (Pa):

$$\Delta P = K \cdot \frac{\rho_m \cdot V^2}{2}$$

Total head loss of fluid (m):

$$\Delta H = K \cdot \frac{V^2}{2 \cdot g}$$

Hydraulic power loss (W):

$$Wh = \Delta P \cdot Q$$

Symbols, Definitions, SI Units:

d₀ Orifice diameter (m)

d Internal pipe diameter (m)

 β Ratio of orifice to pipe diameters ()

A_o Orifice cross-sectional area (m²)

A Pipe cross-sectional area (m²)

Q Volume flow rate (m³/s)

G Mass flow rate (kq/s)

 V_o Mean velocity in orifice (m/s)

V Mean velocity in pipe (m/s)

NRe_o Reynolds number in orifice ()

NRe Reynolds number in pipe ()

Thickness orifice (m)

Ψ Bevel angle (°)

 λ Jet velocity ratio ()

 V_c Mean velocity in vena contracta (m/s)

 C_{b} Coefficient of effect of the bevel angle () Coefficient of local resistance () K_o Total pressure loss coefficient (based on the mean pipe velocity) () ΛP Total pressure loss (Pa) ΔH Total head loss of fluid (m) Wh Hydraulic power loss (W) Fluid density (kg/m³) ρ_{m} Fluid kinematic viscosity (m²/s) ν Gravitational acceleration (m/s^2) q

Validity range:

- turbulent flow regime in orifice (NRe_o $\geq 10^4$)
- stabilized flow upstream of the orifice
- bevel angle less than or equal to: $\psi \le tg^{-1}((d d_0) / (2 I))$

Example of application:

References:

[1] Pipe Flow: A Practical and Comprehensive Guide. Donald C. Rennels and Hobart M. Hudson. (2012)

HydrauCalc Edition: May 2020

© François Corre 2020