

Sudden Contraction Bevelled Circular Cross-Section (Pipe Flow - Guide)

Model description:

This model of component calculates the minor head loss (pressure drop) generated by the flow in a sudden contraction bevelled.

The head loss by friction in the inlet and outlet piping is not taken into account in this component.

Model formulation:

Ratio of small to large diameter:

$$\beta = \frac{d_2}{d_1}$$

Top angle of cone (°):

$$\alpha = 2 \cdot \tan^{-1} \left(\frac{d_0 - d_2}{2 \cdot I} \right)$$

Major cross-sectional area (m2):

$$A_1 = \pi \cdot \frac{{d_1}^2}{4}$$

Minor cross-sectional area (m2):

$$A_2 = \pi \cdot \frac{d_2^2}{4}$$

Mean velocity in major diameter (m/s):

$$V_1 = \frac{Q}{A_1}$$

Mean velocity in minor diameter (m/s):

$$V_2 = \frac{Q}{A_2}$$

Mass flow rate (kg/s):

$$G = Q \cdot \rho$$

Reynolds number in major diameter:

$$N_{\text{Re}_1} = \frac{V_1 \cdot d_1}{V}$$

Reynolds number in minor diameter:

$$N_{\text{Re}_2} = \frac{V_2 \cdot d_2}{v}$$

Local resistance coefficient ($N_{Re} \ge 10^4$):

$$K_2 = 0.0696 \cdot \left[1 + C_B \cdot \left(\sin \left(\frac{\alpha}{2} \right) - 1 \right) \right] \cdot \left(1 - \beta^5 \right) \cdot \lambda^2 + \left(\lambda - 1 \right)^2$$

([1] equation 10.19)

With:

$$C_B = \frac{I}{d_2} \cdot \frac{2 \cdot \beta \cdot \tan\left(\frac{\alpha}{2}\right)}{1 - \beta}$$

([1] equation 10.21)

And:

$$\lambda = 1 + 0.622 \cdot \left[1 + C_B \cdot \left(\left(\frac{\alpha}{180} \right)^{4/5} - 1 \right) \right] \cdot \left(1 - 0.215 \cdot \beta^2 - 0.785 \cdot \beta^5 \right)$$

([1] equation

10.20)

Total pressure loss coefficient (based on mean velocity in minor diameter):

$$K = K_2$$

Total pressure loss (Pa):

$$\Delta P = K \cdot \frac{\rho_m \cdot V_2^2}{2}$$

Total head loss of fluid (m):

$$\Delta H = K \cdot \frac{{v_2}^2}{2 \cdot g}$$

Hydraulic power loss (W):

$$Wh = \Delta P \cdot Q$$

 A_2

Symbols, Definitions, SI Units:

- Major diameter (m) d_1 d_2 Minor diameter (m) Base diameter of the cone (m) d_0 β Ratio of small to large diameter () Major cross-sectional area (m²) A_1 Minor cross-sectional area (m²)
- Volume flow rate (m³/s) Q G Mass flow rate (kg/s)
- V_1 Mean velocity in major diameter (m/s) V_2 Mean velocity in minor diameter (m/s)Reynolds number in major diameter () NRe₁ NRe₂ Reynolds number in minor diameter ()
- K₂ Local resistance coefficient ()
- C_{B} Ratio of bevel length I to the length of a conical contraction of corresponding diameter ratio and included angle ()
- Jet contraction coefficient () λ
- Total pressure loss coefficient (based on mean velocity in minor K diameter) ()
- $\Delta \mathsf{P}$ Total pressure loss (Pa) Total head loss of fluid (m) ΔH
- Wh Hydraulic power loss (W)
- Fluid density (kg/m³) ρ_{m}
- Fluid kinematic viscosity (m²/s) ν Gravitational acceleration (m/s^2) g

Validity range:

• turbulent flow regime in minor diameter (NRe₂ \geq 10⁴)

Example of application:

References:

[1] Pipe Flow: A Practical and Comprehensive Guide. Donald C. Rennels and Hobart M. Hudson. (2012)

Edition: January 2020

HydrauCalc © François Corre 2020