Sudden Contraction Rounded Circular Cross-Section
 (Pipe Flow - Guide)

Model description:

This model of component calculates the minor head loss (pressure drop) generated by the flow in a sudden contraction rounded.

The head loss by friction in the inlet and outlet piping is not taken into account in this component.

Model formulation:

Ratio of small to large diameter:

$$
\beta=\frac{d_{2}}{d_{1}}
$$

Major cross-sectional area $\left(m^{2}\right)$:
$A_{1}=\pi \cdot \frac{d_{1}^{2}}{4}$

Minor cross-sectional area (m^{2}):
$\mathrm{A}_{2}=\pi \cdot \frac{d_{2}{ }^{2}}{4}$

Mean velocity in major diameter (m / s):
$V_{1}=\frac{Q}{A_{1}}$

Mean velocity in minor diameter $(\mathrm{m} / \mathrm{s})$:

$$
V_{2}=\frac{Q}{A_{2}}
$$

Mass flow rate (kg / s):

$$
G=Q \cdot \rho
$$

Reynolds number in major diameter:
$N_{\text {Re }_{1}}=\frac{V_{1} \cdot d_{1}}{v}$

Reynolds number in minor diameter:

$$
N_{\mathrm{Re}_{2}}=\frac{V_{2} \cdot d_{2}}{v}
$$

Jet contraction coefficient:
■ $0 \leq r / d_{2} \leq 1$:

$$
\lambda=1+0.622 \cdot\left(1-0.30 \cdot \sqrt{\frac{r}{d_{2}}}-0.70 \cdot \frac{r}{d_{2}}\right)^{4} \cdot\left(1-0.215 \cdot \beta^{2}-0.785 \cdot \beta^{5}\right)
$$

([1] equation
10.7)

- $r / d_{2}>1$:
$\lambda=1$

Local resistance coefficient ($\mathrm{NRe}_{2} \geq 10^{4}$):

- $0 \leq r / d_{2} \leq 1$:

$$
K_{2}=0.0696 \cdot\left(1-0.569 \cdot \frac{r}{d_{2}}\right) \cdot\left(1-\sqrt{\frac{r}{d_{2}}} \cdot \beta\right) \cdot\left(1-\beta^{5}\right) \cdot \lambda^{2}+(\lambda-1)^{2}
$$

- $r / d_{2}>1$:
$K_{2}=0.030 \cdot(1-\beta) \cdot\left(1-\beta^{4}\right)$
([1] equation 10.8)

Total pressure loss coefficient (based on mean velocity in minor diameter):
$K=K_{2}$

Total pressure loss (Pa) :
$\Delta P=K \cdot \frac{\rho_{m} \cdot v_{2}^{2}}{2}$
$\Delta H=K \cdot \frac{v_{2}{ }^{2}}{2 \cdot g}$

Hydraulic power loss (W):
$W h=\Delta P \cdot Q$

Symbols, Definitions, SI Units:

$d_{1} \quad$ Major diameter (m)
$\mathrm{d}_{2} \quad$ Minor diameter (m)
$\beta \quad$ Ratio of small to large diameter ()
$A_{1} \quad$ Major cross-sectional area (m^{2})
$A_{2} \quad$ Minor cross-sectional area (m^{2})
$Q \quad$ Volume flow rate ($\mathrm{m}^{3} / \mathrm{s}$)
$G \quad$ Mass flow rate (kg / s)
$V_{1} \quad$ Mean velocity in major diameter (m / s)
$V_{2} \quad$ Mean velocity in minor diameter (m / s)
NRe $_{1} \quad$ Reynolds number in major diameter ()
NRe_{2} Reynolds number in minor diameter ()
$r \quad$ Radius of the round (m)
$\lambda \quad$ Jet contraction coefficient ()
$\mathrm{K}_{2} \quad$ Local resistance coefficient ()
K Total pressure loss coefficient (based on mean velocity in minor diameter) ()
$\Delta \mathrm{P} \quad$ Total pressure loss (Pa)
$\Delta H \quad$ Total head loss of fluid (m)
Wh Hydraulic power loss (W)
$\rho_{m} \quad$ Fluid density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
$v \quad$ Fluid kinematic viscosity ($\mathrm{m}^{2} / \mathrm{s}$)
$9 \quad$ Gravitational acceleration $\left(\mathrm{m} / \mathrm{s}^{2}\right)$

Validity range:

- turbulent flow regime in minor diameter ($\mathrm{NRe}_{2} \geq 10^{4}$)
- round radius less than the radius difference ($r<\left(d_{1} / 2-d_{2} / 2\right)$)

Example of application:

Fluid characteristics
Fluid: Water @ $1 \mathrm{~atm}[\mathrm{HC}]$ Ref.: IAPWS IF97

Density :	ρ	998.2061	$\mathrm{~kg} / \mathrm{m}^{3}$
Dynamic Viscosity:	μ	0.00100159	$\mathrm{~N} . \mathrm{s} / \mathrm{m}^{2}$
Kinematic Viscosity:	v	$1.00340 \mathrm{E}-06$	$\mathrm{~m}^{2} / \mathrm{s}$

Divers

Geometrical characteristics

Help Info
Calculate

Complementary results

Designation	Symbol	Value	Unit
Diameters ratio (d2/d1)	β	0.6130868	
Major cross-section area	A1	0.003881508	m^{2}
Minor cross-section area	A2	0.001458963	m^{2}
Cross-sections area ratio	A2/A1	0.3758754	
Ratio 'Radius of the round / small diameter'	r/d2	0.1160093	
Major diameter Reynolds number	NRe1	90251	
Minor diameter Reynolds number	NRe2	147207.5	
Jet velocity ratio (Equation 10.7)	λ	1.235441	
Coefficient of local resistance (Equation 10.6)	K2	0.1271336	
Pressure loss coefficient (based on velocity in minor diameter)	K	0.1271336	
Hydraulic power loss	Wh	3.726247	w

References:

[1] Pipe Flow: A Practical and Comprehensive Guide. Donald C. Rennels and Hobart M. Hudson. (2012)

HydrauCalc

Edition: January 2020
© François Corre 2020

