

Miter Bend Circular Cross-Section (IDELCHIK)

Model description:

This model of component calculates the head loss (pressure drop) of a miter bend whose cross-section is circular and constant. In addition, the flow is assumed fully developed and stabilized à the entrance bend.

Model formulation:

Hydraulic diameter (m):

$$D_h = D_0$$

Cross-section area (m2):

$$\mathsf{F}_0 = \pi \cdot \frac{\mathsf{D}_0^2}{\mathsf{4}}$$

Mean velocity (m/s):

$$w_0 = \frac{Q}{F_0}$$

Mass flow rate (kg/s):

$$G = Q \cdot \rho$$

Reynolds number:

$$Re = \frac{w_0 \cdot D_h}{v}$$

Relative roughness:

$$\overline{\Delta} = \frac{\Delta}{D_0}$$

Coefficient of effect of the roughness:

$$k_{\Delta} = f(\operatorname{Re}, \overline{\Delta})$$

([1] diagram 6.6)

Δ	Re	
	3·10 ³ - 4·10 ⁴	> 4·10 ⁴
0	1.0	1.0
0 - 0.001	1.0	$1 + 0.5 \cdot 10^3 \cdot \overline{\Delta}$
> 0.001	1.0	1.5

Coefficient of effect of the Reynolds number (Re $\geq 10^4$):

$$k_{Re} = f(Re)$$

([1] diagram 6.6)

Coefficient of effect of the angle:

$$A = f(\delta)$$

([1] diagram 6.7)

Coefficient of effect of the relative elongation of the cross section:

$$C_1 = 1$$

([1] diagram 6.7)

Coefficient of local resistance:

$$\zeta_{loc} = f(\delta)$$

([1] diagram 6.7)

Total pressure loss coefficient (based on the mean velocity in the bend):

$$\zeta = \mathbf{k}_{\Delta} \cdot \mathbf{k}_{Re} \cdot \mathbf{C}_{1} \cdot \mathbf{A} \cdot \zeta_{loc}$$

([1] diagram 6.7)

Darcy friction factor:

$$\lambda = f\left(\text{Re}, \frac{\Delta}{D_h}\right)$$

See <u>Straight Pipe - Circular Cross-Section and Nonuniform Roughness Walls</u> (IDELCHIK)

Straight length of equivalent pressure loss (m):

$$L_{eq} = \zeta \cdot \frac{D_0}{\lambda}$$

Total pressure loss (Pa):

$$\Delta P = \zeta \cdot \frac{\rho \cdot W_0^2}{2}$$

([1] diagram 6.7)

Total head loss of fluid (m):

$$\Delta H = \zeta \cdot \frac{{w_0}^2}{2 \cdot g}$$

Hydraulic power loss (W):

$$Wh = \Delta P \cdot Q$$

Symbols, Definitions, SI Units:

- D_h Bend hydraulic diameter (m)
- D₀ Bend internal diameter (m)
- F₀ Cross-sectional area (m²)
- Q Volume flow rate (m³/s)
- wo Mean velocity (m/s)
- G Mass flow rate (kg/s)

Re Reynolds number () Absolute roughness of walls (m) Δ $\bar{\Delta}$ Relative roughness of walls () Coefficient that allows for the effect of the roughness k_{Δ} Coefficient that allows for the effect of the Reynolds number **K**Re Angle of the bend (°) δ Coefficient that allows for the effect of the angle Α C_1 Coefficient that allows for the effect of the relative elongation of the cross section Coefficient of local resistance () ζ_{loc} Total pressure loss coefficient (based on the mean velocity in the bend) ζ () λ Darcy friction coefficient () Straight length of equivalent pressure loss (m) Leg $\Delta \mathsf{P}$ Total pressure loss (Pa) Total head loss of fluid (m) ΔH Wh Hydraulic power loss (W) Fluid density (kg/m³) ρ Fluid kinematic viscosity (m²/s) ν Gravitational acceleration (m/s2) g

Validity range:

- stabilized flow upstream bend
- length of the straight section downstream: $\geq 10 \ D_0$
- curvature angle: 0 to 180°
- flow regime: $Re \ge 10^4$

Example of application:

References:

[1] Handbook of Hydraulic Resistance, 3rd Edition, I.E. Idelchik

HydrauCalc Edition: April 2019

© François Corre 2018-2019