

Dividing sharp-edged junction Circular Cross-Section (CRANE)

Model description:

This model of component calculates the minor head loss (pressure drop) generated by the flow in a dividing sharp-edged junction.

The head loss by friction in the inlet and outlet piping is not taken into account in this component.

Model formulation:

Ratio between the diameter of the lateral branch and that of the common branch:

$$\beta_b = \frac{d_b}{d_c}$$

Cross-sectional area of the lateral branch (m²):

$$A_b = \pi \cdot \frac{d_b^2}{4}$$

Cross-sectional area of the common branch and the straight branch (m^2) :

$$A_c = \pi \cdot \frac{d_c^2}{4}$$

Volume flow rate in the common branch (m^3/s) :

$$Q_c = Q_b + Q_r$$

Mean velocity in the lateral branch (m/s):

$$V_b = \frac{Q_b}{A_b}$$

Mean velocity in the straight branch (m/s):

$$V_r = \frac{Q_r}{A_c}$$

Mean velocity in the common branch (m/s):

$$V_c = \frac{Q_c}{A_c}$$

Mass flow rate in the lateral branch (kg/s):

$$G_b = Q_b \cdot \rho$$

Mass flow rate in the straight branch (kg/s):

$$G_r = Q_r \cdot \rho$$

Mass flow rate in the common branch (kg/s):

$$G_c = Q_c \cdot \rho$$

Reynolds number in the lateral branch:

$$\mathsf{Re}_b = \frac{v_b \cdot d_b}{v}$$

Reynolds number in the straight branch:

$$Re_r = \frac{v_r \cdot d_c}{v}$$

Reynolds number in the common branch:

$$Re_c = \frac{v_c \cdot d_c}{v}$$

Pressure loss coefficient of the lateral branch (based on mean velocity in the common branch):

$$K_b = G \cdot \left[1 + H \cdot \left(\frac{Q_b}{Q_c} \cdot \frac{1}{{\beta_b}^2} \right)^2 - J \cdot \left(\frac{Q_b}{Q_c} \cdot \frac{1}{{\beta_b}^2} \right) \cdot \cos(\alpha) \right]$$

([1] equation 2-37)

with:

Values of G, H, J

Angle	β	G	н	J
30° - 60°		Table 2-4	1	2
90°	≤ 2/3	1	1	2
90	> 2/3	$1+0.3\cdot\left(\frac{Q_b}{Q_c}\right)^2$	0.3	0

([1] table 2-

3)

Values of G for angle $\leq 60^{\circ}$

β²ь		≤ 0.35		> 0.35	
Q _b / Q	રે	≤ 0.4	> 0.4	≤ 0.6	> 0.6
G		$1.1 - 0.7 \cdot \frac{Q_b}{Q_c}$	0.85	$1.0 - 0.6 \cdot \frac{Q_b}{Q_c}$	0.6

([1] table 2-4)

([1] equation 2-37 with

Ab/Ac = 1

Pressure loss coefficient of the straight branch (based on mean velocity in the common branch):

$$K_r = M \cdot \left(\frac{Q_b}{Q_c}\right)^2$$

([1] equation 2-38)

with:

Values of M

Q _b / Q _c	≤ 0.5		> 0.5	
β²ь	≤ 0.4	> 0.4	≤ 0.4	> 0.4
м	0.4	$2 \cdot \left(2 \cdot \frac{Q_b}{Q_c} - 1\right)$	0.4	$0.3 \cdot \left(2 \cdot \frac{Q_b}{Q_c} - 1\right)$

([1] table 2-5)

([1] equation 2-38)

Pressure loss in the lateral branch (Pa):

$$\Delta P_b = K_b \cdot \frac{\rho \cdot V_c^2}{2}$$

Pressure loss in the straight branch (Pa):

$$\Delta P_r = K_r \cdot \frac{\rho \cdot V_c^2}{2}$$

Head loss of fluid in the lateral branch (m):

$$\Delta H_b = K_b \cdot \frac{{v_c}^2}{2 \cdot g}$$

Head loss of fluid in the straight branch (m):

$$\Delta H_r = K_r \cdot \frac{{v_c}^2}{2 \cdot g}$$

Hydraulic power loss in the lateral branch (W):

$$Wh_b = \Delta P_b \cdot Q_b$$

Hydraulic power loss in the straight branch (W):

$$Wh_r = \Delta P_r \cdot Q_r$$

Symbols, Definitions, SI Units:

d_b Diameter of the lateral branch (m)

d_c Diameter of the common branch and the straight branch (m)

 β_b Ratio between the diameter of the lateral branch and that of the

common branch ()

Ab Cross-sectional area of the lateral branch (m²)

 A_c Cross-sectional area of the common branch and the straight branch (m^2)

 Q_b Volume flow rate in the lateral branch (m^3/s)

 v_b Mean velocity in the lateral branch (m/s)

 Q_r Volume flow rate in the straight branch (m^3/s)

 v_r Mean velocity in the straight branch (m/s)

 Q_c Volume flow rate in the common branch (m³/s)

 v_c Mean velocity in the common branch (m/s)

 G_b Mass flow rate in the lateral branch (kg/s)

 G_r Mass flow rate in the straight branch (kg/s)

 G_c Mass flow rate in the common branch (kg/s)

 Re_b Reynolds number in the lateral branch ()

Rer Reynolds number in the straight branch ()

 Re_c Reynolds number in the common branch ()

 α Angle of the lateral branch (m)

K_b Pressure loss coefficient of the lateral branch (based on mean velocity in the common branch) ()

 K_r Pressure loss coefficient of the straight branch (based on mean velocity in the common branch) ()

 ΔP_b Pressure loss in the lateral branch (Pa)

 ΔP_r Pressure loss in the straight branch (Pa)

 ΔH_b Head loss of fluid in the lateral branch (m)

 ΔH_r Head loss of fluid in the straight branch (m)

 Wh_b Hydraulic power loss in the lateral branch (W)

 Wh_r Hydraulic power loss in the straight branch (W)

- ρ Fluid density (kg/m³)
- v Fluid kinematic viscosity (m²/s)
- g Gravitational acceleration (m/s²)

note: the indices $_{b,\,r}$ and $_{c}$ correspond respectively to the indices $_{branch,\,run}$ and $_{combined}$ of the reference document.

Validity range:

- turbulent flow regime ($Re_c \ge 10^4$)
- angle of the lateral branch: between 30° and 90°

Example of application:

References:

[1] CRANE - Flow of Fluids Through Valves, Fitting and Pipe - Technical Paper No. 410 - Edition 2013

HydrauCalc Edition: March 2019

© François Corre 2019