Dividing sharp-edged junction Circular Cross-Section (CRANE)

Model description:

This model of component calculates the minor head loss (pressure drop) generated by the flow in a dividing sharp-edged junction.

The head loss by friction in the inlet and outlet piping is not taken into account in this component.

Model formulation:

Ratio between the diameter of the lateral branch and that of the common branch:

$$
\beta_{b}=\frac{d_{b}}{d_{c}}
$$

Cross-sectional area of the lateral branch $\left(\mathrm{m}^{2}\right)$:
$A_{b}=\pi \cdot \frac{d_{b}^{2}}{4}$

Cross-sectional area of the common branch and the straight branch (m^{2}):

$$
\mathrm{A}_{c}=\pi \cdot \frac{d_{c}{ }^{2}}{4}
$$

Volume flow rate in the common branch ($\mathrm{m}^{3} / \mathrm{s}$):

$$
\mathrm{Q}_{c}=\mathrm{Q}_{b}+\mathrm{Q}_{r}
$$

Mean velocity in the lateral branch (m / s):
$v_{b}=\frac{Q_{b}}{A_{b}}$

Mean velocity in the straight branch (m / s):

Mean velocity in the common branch (m / s):
$v_{c}=\frac{Q_{c}}{A_{c}}$

Mass flow rate in the lateral branch (kg / s):

$$
G_{b}=Q_{b} \cdot \rho
$$

Mass flow rate in the straight branch (kg / s):

$$
G_{r}=Q_{r} \cdot \rho
$$

Mass flow rate in the common branch (kg / s):

$$
G_{c}=Q_{c} \cdot \rho
$$

Reynolds number in the lateral branch:

$$
\operatorname{Re}_{b}=\frac{v_{b} \cdot d_{b}}{v}
$$

Reynolds number in the straight branch:

$$
\operatorname{Re}_{r}=\frac{v_{r} \cdot d_{c}}{v}
$$

Reynolds number in the common branch:

$$
\operatorname{Re}_{c}=\frac{v_{c} \cdot d_{c}}{v}
$$

Pressure loss coefficient of the lateral branch (based on mean velocity in the common branch):

$$
K_{b}=G \cdot\left[1+H \cdot\left(\frac{Q_{b}}{Q_{c}} \cdot \frac{1}{\beta_{b}{ }^{2}}\right)^{2}-J \cdot\left(\frac{Q_{b}}{Q_{c}} \cdot \frac{1}{\beta_{b}^{2}}\right) \cdot \cos (\alpha)\right]
$$

with:

Angle	$\boldsymbol{\beta}$	\boldsymbol{G}	\mathbf{H}	\mathbf{J}
$30^{\circ}-60^{\circ}$		Table 2-4	1	2
90°	$\leq 2 / 3$	1	1	2
	$>2 / 3$	$1+0.3 \cdot\left(\frac{Q_{b}}{Q_{c}}\right)^{2}$	0.3	0

([1] table 2-
3)

Values of G for angle $\leq 60^{\circ}$

$\boldsymbol{\beta}^{2}{ }_{b}$	≤ 0.35		>0.35	
$\mathbf{Q}_{b} / \mathbf{Q}_{c}$	≤ 0.4	>0.4	≤ 0.6	>0.6
\boldsymbol{G}	$1.1-0.7 \cdot \frac{Q_{b}}{Q_{c}}$	0.85	$1.0-0.6 \cdot \frac{Q_{b}}{Q_{c}}$	0.6

([1] table 2-4)

([1] equation 2-37 with
$A b / A c=1)$

Pressure loss coefficient of the straight branch (based on mean velocity in the common branch):
A_{c}

$K_{r}=M \cdot\left(\frac{Q_{b}}{Q_{c}}\right)^{2}$

with:

$$
\text { Values of } M
$$

Q_{b} / Q_{c}	≤ 0.5		>0.5	
$\boldsymbol{\beta}^{2}{ }_{b}$	≤ 0.4	>0.4	≤ 0.4	>0.4
\boldsymbol{M}	0.4	$2 \cdot\left(2 \cdot \frac{Q_{b}}{Q_{c}}-1\right)$	0.4	$0.3 \cdot\left(2 \cdot \frac{Q_{b}}{Q_{c}}-1\right)$

([1] table 2-5)

([1] equation 2-38)
Pressure loss in the lateral branch (Pa):

$$
\Delta P_{b}=K_{b} \cdot \frac{\rho \cdot v_{c}{ }^{2}}{2}
$$

Pressure loss in the straight branch (Pa):
$\Delta P_{r}=K_{r} \cdot \frac{\rho \cdot v_{c}^{2}}{2}$

Head loss of fluid in the lateral branch (m):
$\Delta H_{b}=K_{b} \cdot \frac{v_{c}^{2}}{2 \cdot g}$
Head loss of fluid in the straight branch (m) :
$\Delta H_{r}=K_{r} \cdot \frac{v_{c}^{2}}{2 \cdot g}$
Hydraulic power loss in the lateral branch (W):
$W h_{b}=\Delta P_{b} \cdot Q_{b}$
Hydraulic power loss in the straight branch (W):

$$
W h_{r}=\Delta P_{r} \cdot Q_{r}
$$

Symbols, Definitions, SI Units:

$d_{b} \quad$ Diameter of the lateral branch (m)
$d_{c} \quad$ Diameter of the common branch and the straight branch (m)
$\beta_{b} \quad$ Ratio between the diameter of the lateral branch and that of the common branch ()
$A_{b} \quad$ Cross-sectional area of the lateral branch $\left(m^{2}\right)$
$A_{c} \quad$ Cross-sectional area of the common branch and the straight branch (m^{2})
$Q_{b} \quad$ Volume flow rate in the lateral branch ($\mathrm{m}^{3} / \mathrm{s}$)
$v_{b} \quad$ Mean velocity in the lateral branch (m / s)
$Q_{r} \quad$ Volume flow rate in the straight branch ($\mathrm{m}^{3} / \mathrm{s}$)
$v_{r} \quad$ Mean velocity in the straight branch (m / s)
$Q_{c} \quad$ Volume flow rate in the common branch ($\mathrm{m}^{3} / \mathrm{s}$)
$v_{c} \quad$ Mean velocity in the common branch (m / s)
$G_{b} \quad$ Mass flow rate in the lateral branch (kg / s)
$G_{r} \quad$ Mass flow rate in the straight branch (kg / s)
$G_{c} \quad$ Mass flow rate in the common branch (kg/s)
$\mathrm{Re}_{b} \quad$ Reynolds number in the lateral branch ()
$\operatorname{Re}_{r} \quad$ Reynolds number in the straight branch ()
$\mathrm{Re}_{c} \quad$ Reynolds number in the common branch ()
$\alpha \quad$ Angle of the lateral branch (m)
$\mathrm{K}_{\mathrm{b}} \quad$ Pressure loss coefficient of the lateral branch (based on mean velocity in the common branch) ()
$K_{r} \quad$ Pressure loss coefficient of the straight branch (based on mean velocity in the common branch) ()
$\Delta \mathrm{P}_{\mathrm{b}} \quad$ Pressure loss in the lateral branch (Pa)
$\Delta \mathrm{P}_{\mathrm{r}} \quad$ Pressure loss in the straight branch (Pa)
$\Delta H_{b} \quad$ Head loss of fluid in the lateral branch (m)
$\Delta H_{r} \quad$ Head loss of fluid in the straight branch (m)
Wh $h_{b} \quad$ Hydraulic power loss in the lateral branch (W)
Whr Hydraulic power loss in the straight branch (W)
$\rho \quad$ Fluid density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
$v \quad$ Fluid kinematic viscosity ($\mathrm{m}^{2} / \mathrm{s}$)
$9 \quad$ Gravitational acceleration ($\mathrm{m} / \mathrm{s}^{2}$)
note: the indices b, r and ${ }_{c}$ correspond respectively to the indices branch, run and combined of the reference document.

Validity range:

- turbulent flow regime $\left(\operatorname{Re}_{c} \geq 10^{4}\right)$
- angle of the lateral branch: between 30° and 90°

Example of application:

References:

[1] CRANE - Flow of Fluids Through Valves, Fitting and Pipe - Technical Paper No. 410 Edition 2013

