

Combining sharp-edged junction Circular Cross-Section (MILLER)

Model description:

This model of component calculates the minor head loss (pressure drop) generated by the flow in a combining sharp-edged junction.

The head loss by friction in the inlet and outlet piping is not taken into account in this component.

Model formulation:

Cross-sectional area of the lateral branch (m²):

$$A_1 = \pi \cdot \frac{D_1^2}{4}$$

Cross-sectional area of the common branch and the straight branch (m²):

$$A_3 = \pi \cdot \frac{D_3^2}{4}$$

Volume flow rate in the common branch (m^3/s) :

$$Q_3 = Q_1 + Q_2$$

Mean velocity in the lateral branch (m/s):

$$U_1 = \frac{Q_1}{A_1}$$

Mean velocity in the straight branch (m/s):

$$U_2 = \frac{Q_2}{A_3}$$

Mean velocity in the common branch (m/s):

$$U_3 = \frac{Q_3}{A_3}$$

Mass flow rate in the lateral branch (kg/s):

$$G_1 = Q_1 \cdot \rho$$

Mass flow rate in the straight branch (kg/s):

$$G_2 = Q_2 \cdot \rho$$

Mass flow rate in the common branch (kg/s):

$$G_3 = Q_3 \cdot \rho$$

Reynolds number in the lateral branch:

$$Re_1 = \frac{U_1 \cdot D_1}{v}$$

Reynolds number in the straight branch:

$$Re_2 = \frac{U_2 \cdot D_3}{v}$$

Reynolds number in the common branch:

$$\mathsf{Re}_3 = \frac{U_3 \cdot D_3}{v}$$

Pressure loss coefficient of the lateral branch (based on mean velocity in the common branch):

■ Angle $\theta = 15^{\circ}$

$$K_{13} = f\left(\frac{Q_1}{Q_3}, \frac{A_1}{A_3}\right)$$

([1] figure 13.2)

■ Angle $\theta = 30^{\circ}$

$$K_{13} = f\left(\frac{Q_1}{Q_3}, \frac{A_1}{A_3}\right)$$

([1] figure 13.4+)

■ Angle $\theta = 45^{\circ}$

$$K_{13} = f\left(\frac{Q_1}{Q_3}, \frac{A_1}{A_3}\right) \tag{}$$

([1] figure 13.6)

■ Angle $\theta = 60^{\circ}$

$$K_{13} = f\left(\frac{Q_1}{Q_3}, \frac{A_1}{A_3}\right)$$

([1] figure 13.8)

■ Angle $\theta = 90^{\circ}$

$$K_{13} = f\left(\frac{Q_1}{Q_3}, \frac{A_1}{A_3}\right)$$

([1] figure 13.10+)

■ Angle $\theta = 120^{\circ}$

$$K_{13} = f\left(\frac{Q_1}{Q_3}, \frac{A_1}{A_3}\right)$$

([1] figure 13.12)

For any angles between 15 ° and 120 °, the coefficient K_{13} is obtained by linear interpolation between the values of K_{13} calculated at 15 °, 30 °, 45 °, 60 °, 90 ° and 120 °.

Pressure loss coefficient of the straight branch (based on mean velocity in the common branch):

$$A_2$$
 Q_2
 A_3
 Q_3

■ Angle $\theta = 15^{\circ}$

$$K_{23} = f\left(\frac{Q_1}{Q_3}, \frac{A_1}{A_3}\right)$$

([1] figure 13.3)

■ Angle $\theta = 30^{\circ}$

$$K_{23} = f\left(\frac{Q_1}{Q_3}, \frac{A_1}{A_3}\right)$$

([1] figure 13.5)

■ Angle $\theta = 45^{\circ}$

$$K_{23} = f\left(\frac{Q_1}{Q_3}, \frac{A_1}{A_3}\right)$$

([1] figure 13.7+)

■ Angle $\theta = 60^{\circ}$

$$K_{23} = f\left(\frac{Q_1}{Q_3}, \frac{A_1}{A_3}\right)$$

([1] figure 13.9)

■ Angle $\theta = 90^{\circ}$

$$K_{23} = f\left(\frac{Q_1}{Q_3}, \frac{A_1}{A_3}\right)$$

([1] figure 13.11)

■ Angle $\theta = 120^{\circ}$

$$K_{23} = f\left(\frac{Q_1}{Q_3}, \frac{A_1}{A_3}\right)$$

([1] figure 13.13)

For any angles θ between 15 ° and 120 °, the coefficient K₂₃ is obtained by linear interpolation between the values of K₂₃ calculated at 15 °, 30 °, 45 °, 60 °, 90 ° and 120 °.

Pressure loss in the lateral branch (Pa):

$$\Delta P_{13} = K_{13} \cdot \frac{\rho \cdot U_3^2}{2}$$

([1] equation 13.1)

Pressure loss in the straight branch (Pa):

$$\Delta P_{23} = K_{23} \cdot \frac{\rho \cdot U_3^2}{2}$$

([1] equation 13.2)

Head loss of fluid in the lateral branch (m):

$$\Delta H_{13} = K_{13} \cdot \frac{U_3^2}{2 \cdot g}$$

Head loss of fluid in the straight branch (m):

$$\Delta H_{23} = K_{23} \cdot \frac{U_3^2}{2 \cdot g}$$

Hydraulic power loss in the lateral branch (W):

$$Wh_{13} = \Delta P_{13} \cdot Q_1$$

Hydraulic power loss in the straight branch (W):

$$Wh_{23} = \Delta P_{23} \cdot Q_2$$

Symbols, Definitions, SI Units:

Diameter of the lateral branch (m) D_1 Diameter of the common branch and the straight branch (m) D₃ A_1 Cross-sectional area of the lateral branch (m²) Cross-sectional area of the common branch and the straight branch (m²) **A**₃ Q_1 Volume flow rate in the lateral branch (m^3/s) Mean velocity in the lateral branch (m/s)U₁ Q_2 Volume flow rate in the straight branch (m³/s) Mean velocity in the straight branch (m/s) U2 Volume flow rate in the common branch (m³/s) \mathbf{Q}_3 U₃ Mean velocity in the common branch (m/s) G_1 Mass flow rate in the lateral branch (kg/s) G_2 Mass flow rate in the straight branch (kg/s) G_3 Mass flow rate in the common branch (kg/s) Re₁ Reynolds number in the lateral branch () Re2 Reynolds number in the straight branch () Re₃ Reynolds number in the common branch () θ Angle of the lateral branch (m) K_{13} Pressure loss coefficient of the lateral branch (based on mean velocity in the common branch) () **K**23 Pressure loss coefficient of the straight branch (based on mean velocity in the common branch) () ΔP_{13} Pressure loss in the lateral branch (Pa) Pressure loss in the straight branch (Pa) ΔP_{23} ΔH_{13} Head loss of fluid in the lateral branch (m) ΔH_{23} Head loss of fluid in the straight branch (m) Wh₁₃ Hydraulic power loss in the lateral branch (W) Hydraulic power loss in the straight branch (W) Wh₂₃ Fluid density (kg/m³) ρ Fluid kinematic viscosity (m²/s) ν Gravitational acceleration (m/s^2) q

Validity range:

- turbulent flow regime ($Re_3 \ge 10^5$)
- $\bullet~$ angle of the lateral branch: between 15 $^{\circ}$ and 120 $^{\circ}$
- cross-sections area ratio $A_1/A_3 \ge 0.2$

note: for cross-sections area ratios A_1/A_3 lower than 0.2 the pressure loss coefficients " K_{13} " and " K_{23} " are extrapolated

Example of application:

References:

[1] Internal Flow System, Second Edition, D.S. Miller (1990)

HydrauCalc Edition: March 2019

© François Corre 2019