Combining sharp-edged junction Circular Cross-Section (MILLER) ## Model description: This model of component calculates the minor head loss (pressure drop) generated by the flow in a combining sharp-edged junction. The head loss by friction in the inlet and outlet piping is not taken into account in this component. ### Model formulation: Cross-sectional area of the lateral branch (m²): $$A_1 = \pi \cdot \frac{D_1^2}{4}$$ Cross-sectional area of the common branch and the straight branch (m²): $$A_3 = \pi \cdot \frac{D_3^2}{4}$$ Volume flow rate in the common branch (m^3/s) : $$Q_3 = Q_1 + Q_2$$ Mean velocity in the lateral branch (m/s): $$U_1 = \frac{Q_1}{A_1}$$ Mean velocity in the straight branch (m/s): $$U_2 = \frac{Q_2}{A_3}$$ Mean velocity in the common branch (m/s): $$U_3 = \frac{Q_3}{A_3}$$ Mass flow rate in the lateral branch (kg/s): $$G_1 = Q_1 \cdot \rho$$ Mass flow rate in the straight branch (kg/s): $$G_2 = Q_2 \cdot \rho$$ Mass flow rate in the common branch (kg/s): $$G_3 = Q_3 \cdot \rho$$ Reynolds number in the lateral branch: $$Re_1 = \frac{U_1 \cdot D_1}{v}$$ Reynolds number in the straight branch: $$Re_2 = \frac{U_2 \cdot D_3}{v}$$ Reynolds number in the common branch: $$\mathsf{Re}_3 = \frac{U_3 \cdot D_3}{v}$$ Pressure loss coefficient of the lateral branch (based on mean velocity in the common branch): ■ Angle $\theta = 15^{\circ}$ $$K_{13} = f\left(\frac{Q_1}{Q_3}, \frac{A_1}{A_3}\right)$$ ([1] figure 13.2) ■ Angle $\theta = 30^{\circ}$ $$K_{13} = f\left(\frac{Q_1}{Q_3}, \frac{A_1}{A_3}\right)$$ ([1] figure 13.4+) ■ Angle $\theta = 45^{\circ}$ $$K_{13} = f\left(\frac{Q_1}{Q_3}, \frac{A_1}{A_3}\right) \tag{}$$ ([1] figure 13.6) ■ Angle $\theta = 60^{\circ}$ $$K_{13} = f\left(\frac{Q_1}{Q_3}, \frac{A_1}{A_3}\right)$$ ([1] figure 13.8) ■ Angle $\theta = 90^{\circ}$ $$K_{13} = f\left(\frac{Q_1}{Q_3}, \frac{A_1}{A_3}\right)$$ ([1] figure 13.10+) # ■ Angle $\theta = 120^{\circ}$ $$K_{13} = f\left(\frac{Q_1}{Q_3}, \frac{A_1}{A_3}\right)$$ ([1] figure 13.12) For any angles between 15 ° and 120 °, the coefficient K_{13} is obtained by linear interpolation between the values of K_{13} calculated at 15 °, 30 °, 45 °, 60 °, 90 ° and 120 °. Pressure loss coefficient of the straight branch (based on mean velocity in the common branch): $$A_2$$ Q_2 A_3 Q_3 ■ Angle $\theta = 15^{\circ}$ $$K_{23} = f\left(\frac{Q_1}{Q_3}, \frac{A_1}{A_3}\right)$$ ([1] figure 13.3) ■ Angle $\theta = 30^{\circ}$ $$K_{23} = f\left(\frac{Q_1}{Q_3}, \frac{A_1}{A_3}\right)$$ ([1] figure 13.5) ■ Angle $\theta = 45^{\circ}$ $$K_{23} = f\left(\frac{Q_1}{Q_3}, \frac{A_1}{A_3}\right)$$ ([1] figure 13.7+) ■ Angle $\theta = 60^{\circ}$ $$K_{23} = f\left(\frac{Q_1}{Q_3}, \frac{A_1}{A_3}\right)$$ ([1] figure 13.9) ■ Angle $\theta = 90^{\circ}$ $$K_{23} = f\left(\frac{Q_1}{Q_3}, \frac{A_1}{A_3}\right)$$ ([1] figure 13.11) ■ Angle $\theta = 120^{\circ}$ $$K_{23} = f\left(\frac{Q_1}{Q_3}, \frac{A_1}{A_3}\right)$$ ([1] figure 13.13) For any angles θ between 15 ° and 120 °, the coefficient K₂₃ is obtained by linear interpolation between the values of K₂₃ calculated at 15 °, 30 °, 45 °, 60 °, 90 ° and 120 °. Pressure loss in the lateral branch (Pa): $$\Delta P_{13} = K_{13} \cdot \frac{\rho \cdot U_3^2}{2}$$ ([1] equation 13.1) Pressure loss in the straight branch (Pa): $$\Delta P_{23} = K_{23} \cdot \frac{\rho \cdot U_3^2}{2}$$ ([1] equation 13.2) Head loss of fluid in the lateral branch (m): $$\Delta H_{13} = K_{13} \cdot \frac{U_3^2}{2 \cdot g}$$ Head loss of fluid in the straight branch (m): $$\Delta H_{23} = K_{23} \cdot \frac{U_3^2}{2 \cdot g}$$ Hydraulic power loss in the lateral branch (W): $$Wh_{13} = \Delta P_{13} \cdot Q_1$$ Hydraulic power loss in the straight branch (W): $$Wh_{23} = \Delta P_{23} \cdot Q_2$$ # Symbols, Definitions, SI Units: Diameter of the lateral branch (m) D_1 Diameter of the common branch and the straight branch (m) D₃ A_1 Cross-sectional area of the lateral branch (m²) Cross-sectional area of the common branch and the straight branch (m²) **A**₃ Q_1 Volume flow rate in the lateral branch (m^3/s) Mean velocity in the lateral branch (m/s)U₁ Q_2 Volume flow rate in the straight branch (m³/s) Mean velocity in the straight branch (m/s) U2 Volume flow rate in the common branch (m³/s) \mathbf{Q}_3 U₃ Mean velocity in the common branch (m/s) G_1 Mass flow rate in the lateral branch (kg/s) G_2 Mass flow rate in the straight branch (kg/s) G_3 Mass flow rate in the common branch (kg/s) Re₁ Reynolds number in the lateral branch () Re2 Reynolds number in the straight branch () Re₃ Reynolds number in the common branch () θ Angle of the lateral branch (m) K_{13} Pressure loss coefficient of the lateral branch (based on mean velocity in the common branch) () **K**23 Pressure loss coefficient of the straight branch (based on mean velocity in the common branch) () ΔP_{13} Pressure loss in the lateral branch (Pa) Pressure loss in the straight branch (Pa) ΔP_{23} ΔH_{13} Head loss of fluid in the lateral branch (m) ΔH_{23} Head loss of fluid in the straight branch (m) Wh₁₃ Hydraulic power loss in the lateral branch (W) Hydraulic power loss in the straight branch (W) Wh₂₃ Fluid density (kg/m³) ρ Fluid kinematic viscosity (m²/s) ν Gravitational acceleration (m/s^2) q # Validity range: - turbulent flow regime ($Re_3 \ge 10^5$) - $\bullet~$ angle of the lateral branch: between 15 $^{\circ}$ and 120 $^{\circ}$ - cross-sections area ratio $A_1/A_3 \ge 0.2$ note: for cross-sections area ratios A_1/A_3 lower than 0.2 the pressure loss coefficients " K_{13} " and " K_{23} " are extrapolated ### Example of application: ### References: [1] Internal Flow System, Second Edition, D.S. Miller (1990) HydrauCalc Edition: March 2019 © François Corre 2019