Combining sharp-edged junction Circular Cross-Section (IDELCHIK)

Model description:

This model of component calculates the minor head loss (pressure drop) generated by the flow in a combining sharp-edged junction.

The head loss by friction in the inlet and outlet piping is not taken into account in this component.

Model formulation:

Cross-sectional area of the lateral branch $\left(\mathrm{m}^{2}\right)$:

$$
\mathrm{F}_{s}=\pi \cdot \frac{D_{s}^{2}}{4}
$$

Cross-sectional area of the common branch and the straight branch $\left(\mathrm{m}^{2}\right)$:

$$
F_{c}=\pi \cdot \frac{D_{c}^{2}}{4}
$$

Volume flow rate in the common branch ($\mathrm{m}^{3} / \mathrm{s}$):

$$
\mathrm{Q}_{c}=\mathrm{Q}_{s}+\mathrm{Q}_{s t}
$$

Mean velocity in the lateral branch (m / s):

$$
w_{s}=\frac{Q_{s}}{F_{s}}
$$

Mean velocity in the straight branch (m / s):

$$
w_{s t}=\frac{Q_{s t}}{F_{c}}
$$

Mean velocity in the common branch (m / s):

Mass flow rate in the lateral branch (kg / s):

$$
G_{s}=Q_{s} \cdot \rho
$$

Mass flow rate in the straight branch (kg / s):

$$
G_{s t}=Q_{s t} \cdot \rho
$$

Mass flow rate in the common branch (kg / s):

$$
G_{c}=Q_{c} \cdot \rho
$$

Reynolds number in the lateral branch:

$$
\mathrm{Re}_{s}=\frac{W_{s} \cdot D_{s}}{v}
$$

Reynolds number in the straight branch:

$$
\operatorname{Re}_{s t}=\frac{w_{s t} \cdot D_{c}}{v}
$$

Reynolds number in the common branch:

$$
\operatorname{Re}_{c}=\frac{W_{c} \cdot D_{c}}{v}
$$

Pressure loss coefficient of the lateral branch (based on mean velocity in the common branch):

■ $\operatorname{Re}_{c} \geq 4000$
$\zeta_{c . s}=A \cdot \zeta^{\prime}{ }_{c . s}$ ([1] diagram 7.17.2 7.3 7.4)
with:
Values of A

F_{s} / F_{c}	≤ 0.35	>0.35	
$\mathbf{Q}_{\mathrm{s}} / \mathbf{Q}_{\mathrm{c}}$	≤ 1	≤ 0.4	>0.4
\mathbf{A}	1	$0.9 \cdot\left(1-\frac{Q_{s}}{Q_{c}}\right)$	0.55

- Angle $\alpha=30^{\circ}$
$\zeta_{c . s}^{\prime}=1+\left(\frac{Q_{S}}{Q_{C}} \cdot \frac{F_{C}}{F_{s}}\right)^{2}-2 \cdot\left(1-\frac{Q_{S}}{Q_{C}}\right)^{2}-1.74 \cdot \frac{F_{c}}{F_{s}} \cdot\left(\frac{Q_{s}}{Q_{C}}\right)^{2}$
([1] diagram 7.1)

- Angle $\alpha=45^{\circ}$

$$
\zeta_{c . s}^{\prime}=1+\left(\frac{Q_{s}}{Q_{c}} \cdot \frac{F_{c}}{F_{s}}\right)^{2}-2 \cdot\left(1-\frac{Q_{S}}{Q_{c}}\right)^{2}-1.41 \cdot \frac{F_{c}}{F_{s}} \cdot\left(\frac{Q_{s}}{Q_{c}}\right)^{2}
$$

- Angle $\alpha=60^{\circ}$

$$
\zeta_{c . s}^{\prime}=1+\left(\frac{Q_{s}}{Q_{c}} \cdot \frac{F_{c}}{F_{s}}\right)^{2}-2 \cdot\left(1-\frac{Q_{s}}{Q_{c}}\right)^{2}-\frac{F_{c}}{F_{s}} \cdot\left(\frac{Q_{s}}{Q_{c}}\right)^{2}
$$

([1] diagram 7.3)

- Angle $\alpha=90^{\circ}$

$$
\zeta_{c . s}^{\prime}=1+\left(\frac{Q_{S}}{Q_{c}} \cdot \frac{F_{C}}{F_{s}}\right)^{2}-2 \cdot\left(1-\frac{Q_{s}}{Q_{C}}\right)^{2}
$$

([1] diagram 7.4)

For any angles α between 30° and 90°, the coefficient $\zeta_{\text {c.s }}^{\prime}$ is obtained by linear interpolation between the values of $\zeta_{c . s}^{\prime}$ calculated at $30^{\circ}, 45^{\circ}, 60^{\circ}$ and 90°.
$\square R e_{c} \leq 2000$
$\zeta_{c . s}=2 \cdot \zeta_{c . s}^{t}+\frac{150}{\operatorname{Re}_{c}}$
([1] equation §30)
with

$$
\begin{equation*}
\zeta_{c . s}^{t}=A \cdot\left[1+\left(\frac{Q_{S}}{Q_{c}} \cdot \frac{F_{c}}{F_{s}}\right)^{2}-2 \cdot \frac{F_{c}}{F_{s t}} \cdot\left(1-\frac{Q_{s}}{Q_{c}}\right)^{2}-2 \cdot \frac{F_{c}}{F_{s}} \cdot\left(\frac{Q_{s}}{Q_{c}}\right)^{2} \cdot \cos (\alpha)\right]+K_{s} \tag{1}
\end{equation*}
$$

equation 7.1)
with :
Values of A

$\mathbf{F}_{s} / \mathbf{F}_{\mathrm{c}}$	≤ 0.35	>0.35	
$\mathbf{Q}_{s} / \mathbf{Q}_{\mathrm{c}}$	≤ 1	≤ 0.4	>0.4
\mathbf{A}	1	$0.9 \cdot\left(1-\frac{Q_{s}}{Q_{c}}\right)$	0.55

([1] table 7-1)

$$
K_{s}=0
$$

- $2000<\operatorname{Re}_{c}<4000$
linear interpolation

$$
\zeta_{c . s}=\zeta_{c . s}^{\prime} \cdot\left(1-\frac{\mathrm{Re}_{c}-2000}{2000}\right)+\zeta_{c . s}^{t} \cdot\left(\frac{\mathrm{Re}_{c}-2000}{2000}\right)
$$

with:
$\zeta_{c . s}^{\prime}=$ laminar coefficient obtained with $\operatorname{Re}_{c}=2000$
$\zeta^{\dagger}{ }_{c . s}=$ turbulent coefficient obtained with $\operatorname{Re}_{c}=4000$

$\zeta_{\text {c.s }}$ for $R e_{c}<4000$ and with
$F_{s} / F_{c}=1$ and $Q_{s} / Q_{c}=0.7$

Pressure loss coefficient of the straight branch (based on mean velocity in the common branch):

■ $\operatorname{Re}_{c} \geq 4000$

- Angle $\alpha=30^{\circ}$

$$
\zeta_{c . s t}=1-\left(1-\frac{Q_{S}}{Q_{C}}\right)^{2}-1.74 \cdot \frac{F_{C}}{F_{S}} \cdot\left(\frac{Q_{S}}{Q_{C}}\right)^{2}
$$

([1] diagram 7.1)

- Angle $\alpha=45^{\circ}$

$$
\zeta_{c . s t}=1-\left(1-\frac{Q_{s}}{Q_{C}}\right)^{2}-1.41 \cdot \frac{F_{c}}{F_{s}} \cdot\left(\frac{Q_{s}}{Q_{c}}\right)^{2}
$$

IDELCHIK - Diagram 7-2 - alpha $=45^{\circ}$

- Angle $\alpha=60^{\circ}$
$\zeta_{c . s t}=1-\left(1-\frac{Q_{S}}{Q_{C}}\right)^{2}-\frac{F_{C}}{F_{s}} \cdot\left(\frac{Q_{S}}{Q_{C}}\right)^{2}$
([1] diagram 7.3)

- Angle $\alpha=90^{\circ}$

$$
\zeta_{c . s t}=1.55 \cdot \frac{Q_{S}}{Q_{C}}-\left(\frac{Q_{S}}{Q_{C}}\right)^{2}
$$

For any angles α between 30° and 90°, the coefficient $\zeta_{\text {c.st }}$ is obtained by linear interpolation between the values of $\zeta_{\text {c.st }}$ calculated at $30^{\circ}, 45^{\circ}, 60^{\circ}$ and 90°.

■ $R e_{c} \leq 2000$

$$
\zeta_{c . s t}=2 \cdot \zeta_{c . s}^{\prime}+a_{0} \cdot\left(1-\frac{Q_{s}}{Q_{c}}\right)^{2}-\left(1.6-0.3 \cdot \frac{F_{s}}{F_{c}}\right) \cdot\left(\frac{F_{c}}{F_{s}} \cdot \frac{Q_{s}}{Q_{c}}\right)^{2}
$$

([1] equation §30)
with:
Values of ao

F_{s} / F_{c}	≤ 0.35	>0.35	
$\mathbf{Q}_{s} / \mathbf{Q}_{c}$	≤ 1	≤ 0.2	>0.2
\mathbf{a}_{0}	$1.8-\frac{Q_{s}}{Q_{c}}$	$1.8-4 \cdot \frac{Q_{s}}{Q_{c}}$	$1.2-\frac{Q_{s}}{Q_{c}}$

([1] table 7-6)

$$
\zeta_{c . s}^{\prime}=2 \cdot \zeta_{c . s}^{t}+\frac{150}{R_{c}}
$$

([1] équation 7.6)
with:

$$
\zeta_{c . s}^{t}=A \cdot\left[1+\left(\frac{Q_{s}}{Q_{c}} \cdot \frac{F_{c}}{F_{s}}\right)^{2}-2 \cdot \frac{F_{c}}{F_{s t}} \cdot\left(1-\frac{Q_{s}}{Q_{c}}\right)^{2}-2 \cdot \frac{F_{c}}{F_{s}} \cdot\left(\frac{Q_{s}}{Q_{c}}\right)^{2} \cdot \cos (\alpha)\right]+K_{s}
$$

([1] équation 7.1)
with:
Values of A

F_{s} / F_{c}	≤ 0.35	>0.35	
$\mathbf{Q}_{s} / \mathbf{Q}_{\mathrm{c}}$	≤ 1	≤ 0.4	>0.4
\mathbf{A}	1	$0.9 \cdot\left(1-\frac{Q_{s}}{Q_{c}}\right)$	0.55

$$
K_{s}=0
$$

- $2000<\operatorname{Re}_{c}<4000$
linear interpolation

$$
\zeta_{c . s}=\zeta_{c . s}^{\prime} \cdot\left(1-\frac{\mathrm{Re}_{c}-2000}{2000}\right)+\zeta_{c . s}^{t} \cdot\left(\frac{\mathrm{Re}_{c}-2000}{2000}\right)
$$

with:
$\zeta_{c . s}=$ laminar coefficient obtained with $\operatorname{Re}_{c}=2000$
$\zeta^{\dagger}{ }_{c . s}=$ turbulent coefficient obtained with $\operatorname{Re}_{c}=4000$

$\zeta_{\text {c.s }}$ for $R e_{c}<4000$ and with
$F_{s} / F_{c}=1$ and $Q_{s} / Q_{c}=0.7$

Pressure loss in the lateral branch (Pa):

$$
\Delta P_{c . s}=\zeta_{c . s} \cdot \frac{\rho \cdot w_{c}^{2}}{2}
$$

Pressure loss in the straight branch (Pa):

$$
\Delta P_{c . s t}=\zeta_{c . s t} \cdot \frac{\rho \cdot w_{c}^{2}}{2}
$$

Head loss of fluid in the lateral branch (m):

$$
\Delta H_{c . s}=\zeta_{c . s} \cdot \frac{w_{c}^{2}}{2 \cdot g}
$$

Head loss of fluid in the straight branch (m):

$$
\Delta H_{c . s t}=\zeta_{c . s t} \cdot \frac{w_{c}^{2}}{2 \cdot g}
$$

Hydraulic power loss in the lateral branch (W):

$$
W h_{s}=\Delta P_{c, s} \cdot Q_{s}
$$

Hydraulic power loss in the straight branch (W):

$$
W h_{s t}=\Delta P_{c . s t} \cdot Q_{s t}
$$

Symbols, Definitions, SI Units:

$D_{s} \quad$ Diameter of the lateral branch (m)
$D_{c} \quad$ Diameter of the common branch and the straight branch (m)
$F_{s} \quad$ Cross-sectional area of the lateral branch $\left(m^{2}\right)$
$\mathrm{F}_{\mathrm{c}} \quad$ Cross-sectional area of the common branch and the straight branch $\left(\mathrm{m}^{2}\right)$
Qs Volume flow rate in the lateral branch ($\mathrm{m}^{3} / \mathrm{s}$)
$w_{s} \quad$ Mean velocity in the lateral branch (m / s)
Qst Volume flow rate in the straight branch ($\mathrm{m}^{3} / \mathrm{s}$)
$\mathrm{w}_{\text {st }} \quad$ Mean velocity in the straight branch (m / s)
$Q_{c} \quad$ Volume flow rate in the common branch $\left(\mathrm{m}^{3} / \mathrm{s}\right)$
$w_{c} \quad$ Mean velocity in the common branch (m / s)
$\sigma_{s} \quad$ Mass flow rate in the lateral branch (kg / s)
$G_{s t} \quad$ Mass flow rate in the straight branch (kg/s)
$G_{c} \quad$ Mass flow rate in the common branch (kg/s)
$\mathrm{Re}_{s} \quad$ Reynolds number in the lateral branch ()
$\mathrm{Re}_{s t} \quad$ Reynolds number in the straight branch ()
$\mathrm{Re}_{c} \quad$ Reynolds number in the common branch ()
$\alpha \quad$ Angle of the lateral branch (m)
$\zeta_{c . s} \quad$ Pressure loss coefficient of the lateral branch (based on mean velocity in the common branch) ()
$\zeta_{\text {c.st }} \quad$ Pressure loss coefficient of the straight branch (based on mean velocity in the common branch) ()
$\Delta P_{s} \quad$ Pressure loss in the lateral branch (Pa)
$\Delta \mathrm{P}_{\mathrm{st}} \quad$ Pressure loss in the straight branch (Pa)
$\Delta H_{s} \quad$ Head loss of fluid in the lateral branch (m)
$\Delta H_{s t} \quad$ Head loss of fluid in the straight branch (m)
$\mathrm{Wh}_{\mathrm{s}} \quad$ Hydraulic power loss in the lateral branch (W)
Wh st Hydraulic power loss in the straight branch (W)
$\rho \quad$ Fluid density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
$v \quad$ Fluid kinematic viscosity ($\mathrm{m}^{2} / \mathrm{s}$)
$9 \quad G r a v i t a t i o n a l ~ a c c e l e r a t i o n ~\left(m / \mathrm{s}^{2}\right)$

Validity range:

- angle of the lateral branch: between 30° and 90°

Example of application:

References:

[1] Handbook of Hydraulic Resistance, 3rd Edition, I.E. Idelchik

HydrauCalc
Edition: March 2019
© François Corre 2019

