Gradual Contraction
 Circular Cross-Section
 (CRANE)

Model description:

This model of component calculates the head loss (pressure drop) generated by the flow in a gradual contraction.

The head loss by friction in the inlet and outlet piping is not taken into account in this component.

Model formulation:

Ratio of small to large diameter:

$$
\beta=\frac{D_{1}}{D_{2}}
$$

Half top angle of cone $\left({ }^{\circ}\right)$:

$$
\theta=\tan ^{-1}\left(\frac{D_{2}-D_{1}}{2 \cdot L}\right)
$$

Minor cross-sectional area (m^{2}):
$\mathrm{A}_{1}=\pi \cdot \frac{D_{1}^{2}}{4}$

Major cross-sectional area $\left(m^{2}\right)$:
$\mathrm{A}_{2}=\pi \cdot \frac{D_{2}^{2}}{4}$

Mean velocity in minor diameter (m / s):
$v_{1}=\frac{q}{A_{1}}$

Mean velocity in major diameter (m / s):

Mass flow rate (kg/s):

$$
G=q \cdot \rho
$$

Fluid volume in the truncated cone $\left(m^{3}\right)$:

$$
\mathrm{V}=L \cdot \frac{\pi}{3} \cdot\left(\left(\frac{D_{1}}{2}\right)^{2}+\left(\frac{D_{2}}{2}\right)^{2}+\left(\frac{D_{1}}{2}\right) \cdot\left(\frac{D_{2}}{2}\right)\right)
$$

Fluid mass in the truncated cone (kg):

$$
\mathrm{M}=V \cdot \rho
$$

Reynolds number in minor diameter:

$$
\mathrm{Re}_{1}=\frac{v_{1} \cdot D_{1}}{v}
$$

Reynolds number in major diameter:

$$
\mathrm{Re}_{2}=\frac{v_{2} \cdot D_{2}}{v}
$$

Local resistance coefficient:
■ $\theta \leq 45^{\circ}$:

$$
K_{1}=0.8 \sin \left(\frac{\theta}{2}\right)\left(1-\beta^{2}\right)
$$

$K_{1}=0.5 \sqrt{\sin \left(\frac{\theta}{2}\right)}\left(1-\beta^{2}\right)$
(Equation 3-18.1)
Gradual contraction

Coefficient of local resistance $-\left(45^{\circ}<\right.$ Theta <= $\left.180^{\circ}\right)$

 CRANE - Equation 3-18.1
$\square 5^{\circ} \leq \theta \leq 180^{\circ}$

Gradual contraction

Coefficient of local resistance $-\left(5^{\circ}<=\right.$ Theta <= $\left.180^{\circ}\right)$ CRANE - Equations 3-18 \& 3-18.1

Total pressure loss coefficient (based on mean velocity in minor diameter):
$K=K_{1}$

Total pressure loss (Pa):

$$
\Delta P=K \cdot \frac{\rho \cdot v_{1}^{2}}{2}
$$

Total head loss of fluid (m):
$\Delta H=K \cdot \frac{v_{1}^{2}}{2 \cdot g}$

Hydraulic power loss (W):

$$
W h=\Delta P \cdot q
$$

Symbols, Definitions, SI Units:
$D_{1} \quad$ Minor diameter (m)
$D_{2} \quad$ Major diameter (m)
$\beta \quad$ Ratio of small to large diameter ()
$L \quad$ Contraction length (m)
$\theta \quad$ Half top angle of cone (${ }^{\circ}$)
$A_{1} \quad$ Minor cross-sectional area (m^{2})
$A_{2} \quad$ Major cross-sectional area (m^{2})
$\mathrm{v}_{1} \quad$ Mean velocity in minor diameter (m / s)
$\mathrm{v}_{2} \quad$ Mean velocity in major diameter (m / s)
$q \quad$ Volume flow rate ($\mathrm{m}^{3} / \mathrm{s}$)
$G \quad$ Mass flow rate (kg/s)
$V \quad$ Fluid volume in the truncated cone $\left(\mathrm{m}^{3}\right)$
$M \quad$ Fluid mass in the truncated cone (kg)
$\mathrm{Re}_{1} \quad$ Reynolds number in minor diameter ()
Re_{2} Reynolds number in major diameter ()
$\mathrm{K}_{1} \quad$ Local resistance coefficient ()
K Total pressure loss coefficient (based on mean velocity in minor
diameter) ()
$\Delta \mathrm{P} \quad$ Total pressure loss (Pa)
$\Delta H \quad$ Total head loss of fluid (m)
Wh Hydraulic power loss (W)
$\rho \quad$ Fluid density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
$v \quad$ Fluid kinematic viscosity ($\mathrm{m}^{2} / \mathrm{s}$)
$9 \quad$ Gravitational acceleration $\left(\mathrm{m} / \mathrm{s}^{2}\right)$

Validity range:

- turbulent flow regime in minor diameter $\left(\operatorname{Re}_{1} \geq 10^{4}\right)$

Example of application:

References:

[1] CRANE - Flow of Fluids Through Valves, Fitting and Pipe - Technical Paper No. 410 Edition 1999

HydrauCalc
Edition: November 2018

