Gradual Contraction
 Circular Cross-Section
 (IDELCHIK)

Model description:

This model of component calculates the head loss (pressure drop) generated by the flow in a gradual contraction.

The head loss by friction in the inlet and outlet piping is not taken into account in this component.

Model formulation:

Top angle of cone $\left({ }^{\circ}\right)$:

$$
\alpha=2 \cdot \tan ^{-1}\left(\frac{D_{1}-D_{0}}{2 \cdot 1}\right)
$$

Minor cross-sectional area $\left(m^{2}\right)$:

$$
F_{0}=\pi \cdot \frac{D_{0}^{2}}{4}
$$

Major cross-sectional area $\left(m^{2}\right)$:

$$
F_{1}=\pi \cdot \frac{D_{1}^{2}}{4}
$$

Cross-sections ratio:

$$
\mathrm{n}_{0}=\frac{F_{0}}{F_{1}}
$$

Mean velocity in minor diameter (m / s):

$$
w_{0}=\frac{Q}{F_{0}}
$$

Mean velocity in major diameter (m / s):

Mass flow rate (kg/s):

$$
G=Q \cdot \rho
$$

Fluid volume in the truncated cone $\left(m^{3}\right)$:

$$
\mathrm{V}=N \cdot \frac{\pi}{3} \cdot\left(\left(\frac{D_{0}}{2}\right)^{2}+\left(\frac{D_{1}}{2}\right)^{2}+\left(\frac{D_{0}}{2}\right) \cdot\left(\frac{D_{1}}{2}\right)\right)
$$

Fluid mass in the truncated cone (kg):

$$
\mathrm{M}=V \cdot \rho
$$

Reynolds number in minor diameter:

$$
\operatorname{Re}_{0}=\frac{w_{0} \cdot D_{0}}{v}
$$

Reynolds number in major diameter:

$$
\operatorname{Re}_{1}=\frac{w_{1} \cdot D_{1}}{v}
$$

Darcy friction factor:

$$
\lambda=f\left(\operatorname{Re}_{0}, \frac{\Delta}{D_{0}}\right)
$$

See Straight Pipe - Circular Cross-Section and Nonuniform Roughness Walls (IDELCHIK)

Darcy Friction Factor

Circular cross-section pipes IDELCHIK (nonuniform roughness walls)

Friction resistance coefficient:

$$
\zeta_{f r}=\frac{\lambda}{8 \cdot \sin (\alpha / 2)} \cdot\left[1-\left(\frac{F_{0}}{F_{1}}\right)^{2}\right]
$$

([1] equation 5.6)

$$
\text { ([1] equation } 5.6 \text { with } \lambda=0.02 \text {) }
$$

Local resistance coefficient:

$$
\begin{aligned}
\zeta_{\text {loc }}= & \left(-0.0125 \cdot n_{0}^{4}+0.0224 \cdot n_{0}^{3}-0.00723 \cdot n_{0}^{2}+0.00444 \cdot n_{0}-0.00745\right) \cdot \\
& \left(\alpha_{r}^{3}-2 \cdot \pi \cdot \alpha_{r}^{2}-10 \cdot \alpha_{r}\right)
\end{aligned}
$$

([1] diagram
5.23 (1))
with:

$$
\alpha_{r}=0.01745 \cdot \alpha
$$

Total pressure loss coefficient (based on mean velocity in minor diameter):

$$
\zeta=\zeta_{l o c}+\zeta_{i r}
$$

Total pressure loss (Pa):

$$
\Delta P=\zeta \cdot \frac{\rho \cdot w_{0}^{2}}{2}
$$

Total head loss of fluid (m):

$$
\Delta H=\zeta \cdot \frac{w_{0}{ }^{2}}{2 \cdot g}
$$

Hydraulic power loss (W):

$$
W h=\Delta P \cdot Q
$$

Symbols, Definitions, SI Units:

Do Minor diameter (m)
$D_{1} \quad$ Major diameter (m)
$\alpha \quad$ Top angle of cone $\left({ }^{\circ}\right)$
$1 \quad$ Truncated cone length (m)
Fo Minor cross-sectional area (m^{2})
$F_{1} \quad$ Major cross-sectional area (m^{2})
no Cross-sections area ratio ()
wo Mean velocity in minor diameter (m / s)
$w_{1} \quad$ Mean velocity in major diameter (m / s)
$Q \quad$ Volume flow rate ($\mathrm{m}^{3} / \mathrm{s}$)
$G \quad$ Mass flow rate (kg / s)
$V \quad$ Fluid volume in the truncated cone $\left(\mathrm{m}^{3}\right)$
$M \quad$ Fluid mass in the truncated cone (kg)
Reo Reynolds number in minor diameter ()
$\mathrm{Re}_{1} \quad$ Reynolds number in major diameter ()
$\Delta \quad$ Absolute roughness of walls (m)
$\bar{\Delta} \quad$ Relative roughness of walls ()
$\lambda \quad$ Darcy friction factor ()
Kloc Local resistance coefficient ()
$\zeta_{f r} \quad$ Friction resistance coefficient ()
$\zeta \quad$ Total pressure loss coefficient (based on mean velocity in minor diameter) ()
$\Delta \mathrm{P} \quad$ Total pressure loss (Pa)
$\Delta H \quad$ Total head loss of fluid (m)
Wh Hydraulic power loss (W)
$\rho \quad$ Fluid density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
$v \quad$ Fluid kinematic viscosity ($\mathrm{m}^{2} / \mathrm{s}$)
$9 \quad$ Gravitational acceleration $\left(\mathrm{m} / \mathrm{s}^{2}\right)$

Validity range:

- turbulent flow regime in minor diameter $\left(\operatorname{Re}_{0} \geq 10^{5}\right)$

Example of application:

He HydrauCalc 2018 b -[Gradual contraction - IDELCHIK (3rd Ed.)]
[1] Handbook of Hydraulic Resistance, 3rd Edition, I.E. Idelchik
HydrauCalc
Edition: November 2018
© François Corre 2018

