Gradual Expansion Circular Cross-Section (MILLER)

Model description:

This model of component calculates the head loss (pressure drop) generated by the flow in a gradual expansion.

The head loss by friction in the inlet and outlet piping is not taken into account in this component.

Model formulation:

Half top angle of cone $\left({ }^{\circ}\right)$:
$\theta=\tan ^{-1}\left(\frac{D_{2}-D_{1}}{2 \cdot N}\right)$

Minor cross-sectional area (m^{2}):
$\mathrm{A}_{1}=\pi \cdot \frac{D_{1}^{2}}{4}$

Major cross-sectional area $\left(m^{2}\right)$:
$\mathrm{A}_{2}=\pi \cdot \frac{D_{2}{ }^{2}}{4}$

Mean velocity in minor diameter (m / s):

$$
U_{1}=\frac{Q}{A_{1}}
$$

Mean velocity in major diameter (m / s):

$$
U_{2}=\frac{Q}{A_{2}}
$$

Fluid volume in the truncated cone $\left(m^{3}\right)$:

$$
\mathrm{V}=N \cdot \frac{\pi}{3} \cdot\left(\left(\frac{D_{1}}{2}\right)^{2}+\left(\frac{D_{2}}{2}\right)^{2}+\left(\frac{D_{1}}{2}\right) \cdot\left(\frac{D_{2}}{2}\right)\right)
$$

Fluid mass in the truncated cone (kg):

$$
\mathrm{M}=V \cdot \rho
$$

Reynolds number in minor diameter:

$$
\operatorname{Re}_{1}=\frac{U_{1} \cdot D_{1}}{v}
$$

Reynolds number in major diameter:

$$
\operatorname{Re}_{2}=\frac{U_{2} \cdot D_{2}}{v}
$$

Local resistance coefficient:

- $\operatorname{Re}_{1} \geq 10^{4}$

$K_{* d}=f\left(\frac{N}{D_{1} / 2}, \frac{A_{2}}{A_{1}}\right)$

([1] figure 11.5+)

Gradual expansion Coefficient of local resistance ($\mathrm{K}^{*} \mathrm{~d}$) MILLER - Figure 11.5+ ($\mathrm{Re}>=1 \mathrm{e} 6$)

- $\operatorname{Re}_{1}<10^{4}$

$$
K_{\text {lam }}=f\left(K_{\text {turb }}, \operatorname{Re}_{1}\right)
$$

([1] figure 14.31)
where:
$K_{\text {turb }}$ is the local resistance coefficient in turbulent regime ($K{ }_{\star d}$ for $R e_{1}=10^{4}-$ figure 11.5+)

Laminar loss coefficient relationship to turbulent loss coefficient
MILLER - Figure $14.31(\mathrm{Re}<1 \mathrm{e} 4)$

Reynolds Number Correction ($\mathrm{Re}_{1}<10^{4}$):

$$
C_{\mathrm{Re}}=\frac{K_{\text {lam }}}{K_{\text {turb }}}
$$

Total pressure loss coefficient (based on mean velocity in minor diameter):

- turbulent flow $\left(\operatorname{Re}_{1} \geq 10^{4}\right)$:

$$
K=K_{*} d
$$

- laminar flow $\left(\mathrm{Re}_{1}<10^{4}\right)$:

$$
K=K_{l a m}
$$

Total pressure loss (Pa):

$$
\Delta P=K \cdot \frac{\rho \cdot U_{1}^{2}}{2}
$$

Total head loss of fluid (m):

$$
\Delta H=K \cdot \frac{U_{1}^{2}}{2 \cdot g}
$$

Hydraulic power loss (W):
$W h=\Delta P \cdot Q$

Symbols, Definitions, SI Units:

$D_{1} \quad$ Minor diameter (m)

D_{2}	Major diameter (m)
N	Truncated cone length (m)
θ	Half top angle of cone (${ }^{\circ}$)
A_{1}	Minor cross-sectional area (m^{2})
A_{2}	Major cross-sectional area (m^{2})
Q	Volume flow rate ($\mathrm{m}^{3} / \mathrm{s}$)
U_{1}	Mean velocity in minor diameter (m / s)
U_{2}	Mean velocity in major diameter (m / s)
G	Mass flow rate (kg/s)
V	Fluid volume in the truncated cone (m^{3})
M	Fluid mass in the truncated cone (kg)
Re_{1}	Reynolds number in minor diameter ()
Re_{2}	Reynolds number in major diameter ()
$K^{*}{ }_{\text {d }}$	Local resistance coefficient for $\mathrm{Re}_{1} \geq 10^{4}$ ()
K turb	Local resistance coefficient for $\mathrm{Re}_{1}=10^{4}$ ()
Klam	Local resistance coefficient for $\mathrm{Re}_{1}<10^{4}$ ()
$C_{\text {Re }}$	Reynolds number correction ()
K	Total pressure loss coefficient (based on mean velocity in minor diameter) ()
ΔP	Total pressure loss (Pa)
$\Delta \mathrm{H}$	Total head loss of fluid (m)
Wh	Hydraulic power loss (W)
ρ	Fluid density ($\mathrm{kg} / \mathrm{m}^{3}$)
v	Fluid kinematic viscosity ($\mathrm{m}^{2} / \mathrm{s}$)
9	Gravitational acceleration ($\mathrm{m} / \mathrm{s}^{2}$)

Validity range:

- any flow regime: laminar and turbulent
- area ratio (A2/A1) between 1.1 and 4
- contraction length ratio ($N /(D 1 / 2$)) less than 20
note: for Reynolds number " Re_{1} " lower than 10^{4}, and coefficients "Kturb" lower than 0.5 or greater than 10, the laminar pressure loss coefficient "Kam" is extrapolated

Example of application:

References:

[1] Internal Flow System, Second Edition, D.S. Miller

HydrauCalc
Edition: November 2018
© François Corre 2018

