

Gradual Expansion Circular Cross-Section (MILLER)

Model description:

This model of component calculates the head loss (pressure drop) generated by the flow in a gradual expansion.

The head loss by friction in the inlet and outlet piping is not taken into account in this component.

Model formulation:

Half top angle of cone (°):

$$\theta = \tan^{-1} \left(\frac{D_2 - D_1}{2 \cdot N} \right)$$

Minor cross-sectional area (m2):

$$A_1 = \pi \cdot \frac{D_1^2}{4}$$

Major cross-sectional area (m²):

$$A_2 = \pi \cdot \frac{D_2^2}{4}$$

Mean velocity in minor diameter (m/s):

$$U_1 = \frac{Q}{A_1}$$

Mean velocity in major diameter (m/s):

$$U_2 = \frac{Q}{A_2}$$

Mass flow rate (kg/s):

$$G = Q \cdot \rho$$

Fluid volume in the truncated cone (m^3) :

$$V = N \cdot \frac{\pi}{3} \cdot \left(\left(\frac{D_1}{2} \right)^2 + \left(\frac{D_2}{2} \right)^2 + \left(\frac{D_1}{2} \right) \cdot \left(\frac{D_2}{2} \right) \right)$$

Fluid mass in the truncated cone (kg):

$$M = V \cdot \rho$$

Reynolds number in minor diameter:

$$\mathsf{Re}_1 = \frac{U_1 \cdot D_1}{v}$$

Reynolds number in major diameter:

$$\mathsf{Re}_2 = \frac{U_2 \cdot D_2}{v}$$

Local resistance coefficient:

■ $Re_1 \ge 10^4$

$$K_{*d} = f\left(\frac{N}{D_1/2}, \frac{A_2}{A_1}\right)$$

([1] figure 11.5+)

■ $Re_1 < 10^4$

$$K_{lam} = f(K_{turb}, Re_1)$$

([1] figure 14.31)

where:

 K_{turb} is the local resistance coefficient in turbulent regime (K_{d} for $Re_1 = 10^4$ - figure 11.5+)

Reynolds Number Correction ($Re_1 < 10^4$):

$$C_{\text{Re}} = \frac{K_{lam}}{K_{turb}}$$

Total pressure loss coefficient (based on mean velocity in minor diameter):

■ turbulent flow (Re₁ \geq 10⁴):

$$K = K_{*d}$$

■ laminar flow (Re₁ < 10^4):

$$K = K_{lam}$$

Total pressure loss (Pa):

$$\Delta P = K \cdot \frac{\rho \cdot U_1^2}{2}$$

Total head loss of fluid (m):

$$\Delta H = K \cdot \frac{U_1^2}{2 \cdot g}$$

Hydraulic power loss (W):

$$Wh = \Delta P \cdot Q$$

Symbols, Definitions, SI Units:

D₁ Minor diameter (m)

 D_2 Major diameter (m) Ν Truncated cone length (m) θ Half top angle of cone (°) Minor cross-sectional area (m²) A_1 Major cross-sectional area (m²) A_2 Volume flow rate (m³/s) Q U_1 Mean velocity in minor diameter (m/s) U2 Mean velocity in major diameter (m/s) G Mass flow rate (kg/s) ٧ Fluid volume in the truncated cone (m³) M Fluid mass in the truncated cone (kg) Reı Reynolds number in minor diameter () Re₂ Reynolds number in major diameter () Local resistance coefficient for $Re_1 \ge 10^4$ () **K***d Local resistance coefficient for $Re_1 = 10^4$ () K_{turb} Local resistance coefficient for $Re_1 < 10^4$ () Klam Reynolds number correction () CRe Total pressure loss coefficient (based on mean velocity in minor K diameter) () Total pressure loss (Pa) ΔP ΔH Total head loss of fluid (m) Wh Hydraulic power loss (W) ρ Fluid density (kg/m³) Fluid kinematic viscosity (m²/s) ν Gravitational acceleration (m/s²) q

Validity range:

- any flow regime: laminar and turbulent
- area ratio (A2/A1) between 1.1 and 4
- contraction length ratio (N/(D1/2)) less than 20

note: for Reynolds number "Re1" lower than 10^4 , and coefficients "Kturb" lower than 0.5 or greater than 10, the laminar pressure loss coefficient "Klam" is extrapolated

Example of application:

References:

[1] Internal Flow System, Second Edition, D.S. Miller

HydrauCalc Edition: November 2018

© François Corre 2018