Gradual Expansion Circular Cross-Section (MILLER) # Model description: This model of component calculates the head loss (pressure drop) generated by the flow in a gradual expansion. The head loss by friction in the inlet and outlet piping is not taken into account in this component. ## Model formulation: Half top angle of cone (°): $$\theta = \tan^{-1} \left(\frac{D_2 - D_1}{2 \cdot N} \right)$$ Minor cross-sectional area (m2): $$A_1 = \pi \cdot \frac{D_1^2}{4}$$ Major cross-sectional area (m²): $$A_2 = \pi \cdot \frac{D_2^2}{4}$$ Mean velocity in minor diameter (m/s): $$U_1 = \frac{Q}{A_1}$$ Mean velocity in major diameter (m/s): $$U_2 = \frac{Q}{A_2}$$ Mass flow rate (kg/s): $$G = Q \cdot \rho$$ Fluid volume in the truncated cone (m^3) : $$V = N \cdot \frac{\pi}{3} \cdot \left(\left(\frac{D_1}{2} \right)^2 + \left(\frac{D_2}{2} \right)^2 + \left(\frac{D_1}{2} \right) \cdot \left(\frac{D_2}{2} \right) \right)$$ Fluid mass in the truncated cone (kg): $$M = V \cdot \rho$$ Reynolds number in minor diameter: $$\mathsf{Re}_1 = \frac{U_1 \cdot D_1}{v}$$ Reynolds number in major diameter: $$\mathsf{Re}_2 = \frac{U_2 \cdot D_2}{v}$$ Local resistance coefficient: ■ $Re_1 \ge 10^4$ $$K_{*d} = f\left(\frac{N}{D_1/2}, \frac{A_2}{A_1}\right)$$ ([1] figure 11.5+) ■ $Re_1 < 10^4$ $$K_{lam} = f(K_{turb}, Re_1)$$ ([1] figure 14.31) where: K_{turb} is the local resistance coefficient in turbulent regime (K_{d} for $Re_1 = 10^4$ - figure 11.5+) Reynolds Number Correction ($Re_1 < 10^4$): $$C_{\text{Re}} = \frac{K_{lam}}{K_{turb}}$$ Total pressure loss coefficient (based on mean velocity in minor diameter): ■ turbulent flow (Re₁ \geq 10⁴): $$K = K_{*d}$$ ■ laminar flow (Re₁ < 10^4): $$K = K_{lam}$$ Total pressure loss (Pa): $$\Delta P = K \cdot \frac{\rho \cdot U_1^2}{2}$$ Total head loss of fluid (m): $$\Delta H = K \cdot \frac{U_1^2}{2 \cdot g}$$ Hydraulic power loss (W): $$Wh = \Delta P \cdot Q$$ # Symbols, Definitions, SI Units: D₁ Minor diameter (m) D_2 Major diameter (m) Ν Truncated cone length (m) θ Half top angle of cone (°) Minor cross-sectional area (m²) A_1 Major cross-sectional area (m²) A_2 Volume flow rate (m³/s) Q U_1 Mean velocity in minor diameter (m/s) U2 Mean velocity in major diameter (m/s) G Mass flow rate (kg/s) ٧ Fluid volume in the truncated cone (m³) M Fluid mass in the truncated cone (kg) Reı Reynolds number in minor diameter () Re₂ Reynolds number in major diameter () Local resistance coefficient for $Re_1 \ge 10^4$ () **K***d Local resistance coefficient for $Re_1 = 10^4$ () K_{turb} Local resistance coefficient for $Re_1 < 10^4$ () Klam Reynolds number correction () CRe Total pressure loss coefficient (based on mean velocity in minor K diameter) () Total pressure loss (Pa) ΔP ΔH Total head loss of fluid (m) Wh Hydraulic power loss (W) ρ Fluid density (kg/m³) Fluid kinematic viscosity (m²/s) ν Gravitational acceleration (m/s²) q ## Validity range: - any flow regime: laminar and turbulent - area ratio (A2/A1) between 1.1 and 4 - contraction length ratio (N/(D1/2)) less than 20 note: for Reynolds number "Re1" lower than 10^4 , and coefficients "Kturb" lower than 0.5 or greater than 10, the laminar pressure loss coefficient "Klam" is extrapolated ## Example of application: ### References: [1] Internal Flow System, Second Edition, D.S. Miller HydrauCalc Edition: November 2018 © François Corre 2018