
www.hydraucalc.com

Rétrécissement brusque droit Section circulaire (CRANE)

Description du modèle :

Ce modèle de composant calcule la perte de charge singulière (chute de pression) générée par l'écoulement dans un rétrécissement brusque droit.

La perte de charge par frottement dans la tuyauterie d'entrée et de sortie n'est pas prise en compte dans ce composant.

Formulation du modèle :

Rapport entre le petit et le grand diamètre :

$$\beta = \frac{D_1}{D_2}$$

Aire de la section du petit diamètre (m²):

$$A_1 = \pi \cdot \frac{D_1^2}{4}$$

Aire de la section du grand diamètre (m^2) :

$$A_2 = \pi \cdot \frac{D_2^2}{4}$$

Vitesse moyenne d'écoulement dans le petit diamètre (m/s) :

$$V_1 = \frac{q}{A_1}$$

Vitesse moyenne d'écoulement dans le grand diamètre (m/s):

$$V_2 = \frac{q}{A_2}$$

Débit massique (kg/s):

$$G = q \cdot \rho$$

Nombre de Reynolds dans le petit diamètre :

$$Re_1 = \frac{v_1 \cdot D_1}{v}$$

Nombre de Reynolds dans le grand diamètre :

$$\mathsf{Re}_2 = \frac{\mathsf{v}_2 \cdot \mathsf{D}_2}{\mathsf{v}}$$

Coefficient de résistance locale ($Re_1 \ge 10^4$):


$$K_1 = 0.5 \cdot \left(1 - \beta^2\right)$$

([1] équation 2-10.1)

ou:

$$K_1 = 0.5 \sqrt{\sin\left(\frac{\theta}{2}\right)} (1 - \beta^2)$$

([1] équation 3-18.1 avec θ =180°)

Coefficient de perte de pression totale (basé sur la vitesse moyenne dans le petit diamètre) :

$$K = K_1$$

Perte de pression totale (Pa) :

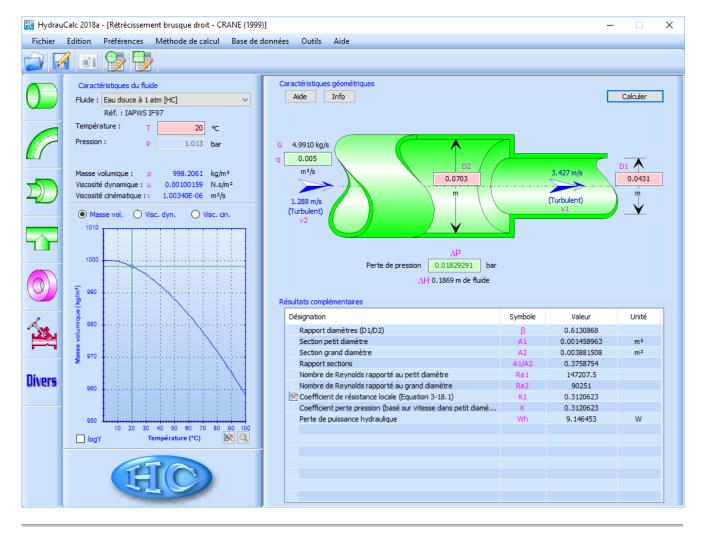
$$\Delta P = K \cdot \frac{\rho \cdot V_1^2}{2}$$

Perte de charge totale de fluide (m):

$$\Delta H = K \cdot \frac{{v_1}^2}{2 \cdot g}$$

Perte de puissance hydraulique (W):

$$Wh = \Delta P \cdot Q$$


Symboles, définitions, unités SI :

Petit diamètre (m) D_1 Grand diamètre (m) D2 β Rapport entre le petit et le grand diamètre () A_1 Section de passage du petit diamètre (m²) A_2 Section de passage du grand diamètre (m²) Débit volumique (m³/s) q G Débit massique (kg/s) Vitesse moyenne d'écoulement dans le petit diamètre (m/s) **V**1 Vitesse moyenne d'écoulement dans le grand diamètre (m/s) **V**2 Re₁ Nombre de Reynolds dans le petit diamètre () Re2 Nombre de Reynolds dans le grand diamètre () Coefficient de résistance locale () K₁ K Coefficient de perte de pression totale (basé sur la vitesse moyenne dans le petit diamètre) () ΔP Perte de pression totale (Pa) ΔH Perte de charge totale de fluide (m) Wh Perte de puissance hydraulique (W) Masse volumique du fluide (kg/m³) ρ ν Viscosité cinématique du fluide (m²/s) Accélération de la pesanteur (m/s^2) g

Domaine de validité :

régime d'écoulement turbulent dans le petit diamètre (Re1 ≥ 10⁴)

Exemple d'application :

Référence :

[1] CRANE - Flow of Fluids Through Valves, Fitting and Pipe - Technical Paper No. 410 - Edition 1999

HydrauCalc Edition: février 2018

© François Corre 2018