

Sudden Expansion Circular Cross-Section Uniform Velocity Distribution (IDELCHIK)

Model description:

This model of component calculates the minor head loss (pressure drop) generated by the flow in a sudden expansion.

The head loss by friction in the inlet and outlet piping is not taken into account in this component.

Model formulation:

Minor cross-sectional area (m²):

$$\mathsf{F}_0 = \pi \cdot \frac{\mathsf{D}_0^2}{4}$$

Major cross-sectional area (m²):

$$\mathsf{F}_2 = \pi \cdot \frac{\mathsf{D}_2^2}{\mathsf{4}}$$

Mean velocity in minor diameter (m/s):

$$w_0 = \frac{Q}{F_0}$$

Mean velocity in major diameter (m/s):

$$W_2 = \frac{Q}{F_2}$$

Mass flow rate (kg/s):

$$G = Q \cdot \rho$$

Reynolds number in minor diameter:

$$Re_0 = \frac{w_0 \cdot D_0}{v}$$

Reynolds number in major diameter:

$$Re_2 = \frac{w_2 \cdot D_2}{v}$$

Local resistance coefficient:

 \blacksquare Re₀ < 10

$$\zeta_{loc} = \frac{30}{Re_0}$$

([1] diagram 4.1)

■ $10 \le Re_0 < 3300$

$$\zeta_{loc} = f\left(\text{Re}_0, \frac{F_0}{F_2}\right)$$

([1] diagram 4.1)

 \blacksquare Re₀ \geq 3300

$$\zeta_{loc} = \left(1 - \frac{F_0}{F_2}\right)^2$$

([1] diagram 4.1)

Total pressure loss coefficient (based on mean velocity in minor diameter):

$$\zeta = \zeta_{loc}$$

Total pressure loss (Pa):

$$\Delta P = \zeta \cdot \frac{\rho \cdot W_0^2}{2}$$

Total head loss of fluid (m):

$$\Delta H = \zeta \cdot \frac{{w_0}^2}{2 \cdot g}$$

Hydraulic power loss (W):

$$Wh = \Delta P \cdot Q$$

Symbols, Definitions, SI Units:

- D₀ Minor diameter (m)
- D₂ Major diameter (m)
- F₀ Minor cross-sectional area (m²)
- F₂ Major cross-sectional area (m²)
- Q Volume flow rate (m³/s)
- G Mass flow rate (kg/s)
- w_0 Mean velocity in minor diameter (m/s)
- w_2 Mean velocity in major diameter (m/s)
- Reo Reynolds number in minor diameter ()
- Re2 Reynolds number in major diameter ()
- ζ_{loc} Local resistance coefficient ()
- ζ Total pressure loss coefficient (based on mean velocity in minor
 - diameter) ()
- ΔP Total pressure loss (Pa)
- ΔH Total head loss of fluid (m)
- Wh Hydraulic power loss (W)
- ρ Fluid density (kg/m³)
- v Fluid kinematic viscosity (m²/s)
- g Gravitational acceleration (m/s²)

Validity range:

• any flow regime: laminar and turbulent

note: for Reynolds number "Re0" between 10 and 3300, and area ratio "F0/ F2"

lower than 0.1 or greater than 0.6, the local pressure loss coefficient is

extrapolated

Example of application:

References:

[1] Handbook of Hydraulic Resistance, 3rd Edition, I.E. Idelchik

HydrauCalc Edition: February 2018

© François Corre 2018