Flush-mounted rounded discharge
 Circular Cross-Section
 (Pipe Flow - Guide)

Model description:

This model of component calculates the minor head loss (pressure drop) generated by the flow in a flush-mounted rounded discharge of piping.

The head loss by friction in the piping is not taken into account in this component.

Model formulation:

Hydraulic diameter (m):

$$
\mathrm{d}_{h}=d
$$

Pipe cross-sectional area $\left(m^{2}\right)$:

$$
A=\pi \cdot \frac{d^{2}}{4}
$$

Mean velocity in pipe (m / s):

$$
V=\frac{Q}{A}
$$

Mass flow rate (kg / s):

$$
G=Q \cdot \rho_{m}
$$

Reynolds number in pipe:

$$
N_{\mathrm{Re}}=\frac{V \cdot d}{v}
$$

Local resistance coefficient ($\mathrm{N}_{\mathrm{Re}} \geq 10^{4}$):

$$
K_{2}=1 \quad([1] \text { §12.1) }
$$

Total pressure loss coefficient (based on mean velocity in pipe):

$$
K=K_{2}
$$

Total pressure loss (Pa):

$$
\Delta P=K \cdot \frac{\rho_{m} \cdot v^{2}}{2}
$$

Total head loss of fluid (m):
$\Delta H=K \cdot \frac{v^{2}}{2 \cdot g}$

Hydraulic power loss (W):
$W h=\Delta P \cdot Q$

Symbols, Definitions, SI Units:

$d_{h} \quad$ Hydraulic diameter (m)
d Pipe diameter (m)
A Pipe cross-sectional area (m^{2})
Q Volume flow rate ($\mathrm{m}^{3} / \mathrm{s}$)
$G \quad$ Mass flow rate (kg / s)
$V \quad$ Mean velocity in pipe (m / s)
$\mathrm{N}_{\mathrm{Re}} \quad$ Reynolds number in pipe ()
$\mathrm{K}_{2} \quad$ Local resistance coefficient ()
$K \quad$ Total pressure loss coefficient (based on mean velocity in pipe) ()
$\Delta \mathrm{P} \quad$ Total pressure loss (Pa)
$\Delta H \quad$ Total head loss of fluid (m)
Wh Hydraulic power loss (W)
$\rho_{m} \quad$ Fluid density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
$v \quad$ Fluid kinematic viscosity ($\mathrm{m}^{2} / \mathrm{s}$)
$9 \quad$ Gravitational acceleration $\left(\mathrm{m} / \mathrm{s}^{2}\right)$

Validity range:

- turbulent flow regime in pipe $\left(\mathrm{N}_{\mathrm{Re}} \geq 10^{4}\right)$

Example of application:

References:

[1] Pipe Flow: A Practical and Comprehensive Guide. Donald C. Rennels and Hobart M. Hudson. (2012)

HydrauCalc
Edition: June 2019 © François Corre 2019

