Flush-mounted rounded entrance Circular Cross-Section (IDELCHIK)

Model description:

This model of component calculates the minor head loss (pressure drop) generated by the flow in a flush-mounted rounded entrance of piping.

The head loss by friction in the piping is not taken into account in this component.

Model formulation:

Hydraulic diameter (m):

$$
\mathrm{D}_{h}=\mathrm{D}_{0}
$$

Pipe cross-sectional area $\left(m^{2}\right)$:

$$
F_{0}=\pi \cdot \frac{D_{0}^{2}}{4}
$$

Mean velocity in pipe (m / s):

$$
w_{0}=\frac{Q}{F_{0}}
$$

Mass flow rate (kg / s):

$$
G=Q \cdot \rho
$$

Reynolds number in pipe:

$$
\operatorname{Re}=\frac{w_{0} \cdot D_{0}}{v}
$$

Local resistance coefficient:
$\square r / D_{h} \leq 0.2$
$\zeta_{\text {loc }}=f\left(r / D_{h}\right)$
([1] diagram 3.4)

■ $r / D_{h}>0.2$
$\zeta_{\text {loc }}=0.03$
([1] diagram 3.4)

Total pressure loss coefficient (based on mean velocity in pipe):

$$
\zeta=\zeta_{l o c}
$$

Total pressure loss (Pa):

$$
\Delta P=\zeta \cdot \frac{\rho \cdot w_{0}^{2}}{2}
$$

Total head loss of fluid (m):

$$
\Delta H=\zeta \cdot \frac{w_{0}{ }^{2}}{2 \cdot g}
$$

Hydraulic power loss (W):
$W h=\Delta P \cdot Q$

Symbols, Definitions, SI Units:

$D_{h} \quad$ Hydraulic diameter (m)
Do Pipe diameter (m)
Fo Pipe cross-sectional area (m^{2})
$Q \quad$ Volume flow rate ($\mathrm{m}^{3} / \mathrm{s}$)
wo Mean velocity in pipe (m / s)
$G \quad$ Mass flow rate (kg/s)

Re	Reynolds number in pipe ()
r	Radius of the round (m)
ζ loc	Local resistance coefficient ()
ζ	Total pressure loss coefficient (based on mean velocity in pipe) ()
$\Delta \mathrm{P}$	Total pressure loss (Pa)
$\Delta \mathrm{H}$	Total head loss of fluid (m)
Wh	Hydraulic power loss (W)
ρ	Fluid density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
ν	Fluid kinematic viscosity $\left(\mathrm{m}^{2} / \mathrm{s}\right)$
g	Gravitational acceleration $\left(\mathrm{m} / \mathrm{s}^{2}\right)$

Validity range:

- turbulent flow regime $\left(\operatorname{Re} \geq 10^{4}\right)$

Example of application:

References:

[1] Handbook of Hydraulic Resistance, 3rd Edition, I.E. Idelchik

