

Flush-mounted sharp-edged entrance mounted at a distance Circular Cross-Section (Pipe Flow - Guide)

Model description:

This model of component calculates the minor head loss (pressure drop) generated by the flow in a flush-mounted sharp-edged entrance of piping mounted at a distance.

The head loss by friction in the piping is not taken into account in this component.

Model formulation:

Hydraulic diameter (m):

$$d_h = d$$

Pipe cross-sectional area (m²):

$$A = \pi \cdot \frac{d^2}{4}$$

Mean velocity in pipe (m/s):

$$V = \frac{Q}{A}$$

Mass flow rate (kg/s):

$$G = Q \cdot \rho_m$$

Reynolds number in pipe:

$$N_{\text{Re}} = \frac{V \cdot d}{v}$$

Local resistance coefficient ($N_{Re} \ge 10^4$ and $I/d \ge 0.5$):

$$K_2 = 1.12 - 22 \cdot \frac{t}{d} + 216 \cdot \left(\frac{t}{d}\right)^2 + 80 \cdot \left(\frac{t}{d}\right)^3$$

([1] equation 9.1)

■ t/d > 0.05

$$K_2 = 0.57$$

Total pressure loss coefficient (based on mean velocity in pipe):

$$K = K_2$$

Total pressure loss (Pa):

$$\Delta P = K \cdot \frac{\rho_m \cdot V^2}{2}$$

Total head loss of fluid (m):

$$\Delta H = K \cdot \frac{V^2}{2 \cdot g}$$

Hydraulic power loss (W):

$$Wh = \Delta P \cdot Q$$

Symbols, Definitions, SI Units:

- dh Hydraulic diameter (m)
- d Pipe diameter (m)
- A Pipe cross-sectional area (m²)
- Q Volume flow rate (m³/s)
- V Mean velocity in pipe (m/s)
- G Mass flow rate (kg/s)

 N_{Re} Reynolds number in pipe () Pipe thickness (m) Distance from the wall (m) Local resistance coefficient () K_2 K Total pressure loss coefficient (based on mean velocity in pipe) () ΛP Total pressure loss (Pa) Total head loss of fluid (m) ΔH Wh Hydraulic power loss (W) Fluid density (kg/m³) ρ_{m} Fluid kinematic viscosity (m²/s) ν Gravitational acceleration (m/s^2) 9

Validity range:

- turbulent flow regime in pipe $(N_{Re} \ge 10^4)$
- relative distance (I/d) equal to or greater than 0.5

Example of application:

References:

[1] Pipe Flow: A Practical and Comprehensive Guide. Donald C. Rennels and Hobart M. Hudson. (2012)

HydrauCalc © François Corre 2019 Edition: June 2019