www.hydraucalc.com

Flush-mounted sharp-edged entrance Circular Cross-Section (MILLER)

Model description:

This model of component calculates the minor head loss (pressure drop) generated by the flow in a flush-mounted sharp-edged entrance of piping.

The head loss by friction in the piping is not taken into account in this component.

Model formulation:

Hydraulic diameter (m):

$$D_h = D$$

Pipe cross-sectional area (m^2) :

$$A = \pi \cdot \frac{D^2}{4}$$

Mean velocity in pipe (m/s):

$$U = \frac{Q}{A}$$

Mass flow rate (kg/s):

$$G = Q \cdot \rho$$

Reynolds number in pipe:

$$Re = \frac{U \cdot D}{v}$$

Local resistance coefficient:

■ Re ≥ 10⁴

$$K_S = 0.5$$
 ([1] figure 14.14+ with A2/A1 = 0 and r/d = 0)

■ $Re < 10^4$

$$K_{lam} = f(Re)$$
 ([1] f

([1] figure 14.31 with $K_{turb} = 0.5$)

Reynolds Number Correction (Re $< 10^4$):

$$C_{\text{Re}} = \frac{K_{lam}}{K_{s}}$$

Total pressure loss coefficient (based on mean velocity in pipe):

■ turbulent flow (Re $\geq 10^4$):

$$K = K_s$$

■ laminar flow (Re $< 10^4$):

$$K = K_{lam}$$

Total pressure loss (Pa):

$$\Delta P = K \cdot \frac{\rho \cdot U^2}{2}$$

Total head loss of fluid (m):

$$\Delta H = K \cdot \frac{U^2}{2 \cdot g}$$

Hydraulic power loss (W):

$$Wh = \Delta P \cdot Q$$

Symbols, Definitions, SI Units: Hydraulic diameter (m) D_h D Pipe diameter (m) Pipe cross-sectional area (m²) Α Volume flow rate (m³/s) Q U Mean velocity in pipe (m/s) G Mass flow rate (kq/s)Re Reynolds number in pipe () Local resistance coefficient for $Re \ge 10^4$ () Ks Local resistance coefficient for Re < 10⁴ () K_{lam} CRe Reynolds number correction for $Re < 10^4$ () Total pressure loss coefficient (based on mean velocity in pipe) ()

 $\Delta \mathsf{P}$ Total pressure loss (Pa) Total head loss of fluid (m) ΔH Wh Hydraulic power loss (W)

Fluid density (kg/m³) ρ

Fluid kinematic viscosity (m²/s) ν Gravitational acceleration (m/s^2) q

Validity range:

Κ

any flow regime: laminar and turbulent

Example of application:

References:

[1] Internal Flow System, Second Edition, D.S. Miller

HydrauCalc Edition: June 2019

© François Corre 2019