Straight Pipe Annular Cross-Section and Smooth Walls (IDELCHIK) # Model description: This model of component calculates the major head loss (pressure drop) of a horizontal straight pipe of annular and constant cross-section. In addition, the flow is assumed fully developed and stabilized. The head loss is due to the friction of the fluid on the inner walls of the piping and is calculated with the Darcy formula. The inner wall of the piping is supposed to completely smooth (without roughness). Darcy friction factor is determined: - for laminar flow regime by the law of Hagen-Poiseuille, - for turbulent flow regime by the explicit Filonenko and Althsul equation, - for critical flow regime by interpolation between friction factors of laminar and turbulent flow. ### Model formulation: Hydraulic diameter (m): $$D_{h} = D_{0} - d$$ Cross-section area (m2): $$\mathsf{F}_0 = \pi \cdot \frac{\mathsf{D}_0^2 - \mathsf{d}^2}{4}$$ Mean velocity (m/s): $$W_0 = \frac{Q}{F_0}$$ Mass flow rate (kg/s): $$G = Q \cdot \rho$$ Fluid volume in the pipe (m3): $$V = F_0 \cdot I$$ Fluid mass in the pipe (kg): $$M = V \cdot \rho$$ Reynolds number: $$\mathsf{Re} = \frac{w_0 \cdot D_h}{v}$$ Relative roughness: $$\overline{\Delta} = \frac{\Delta}{D_h}$$ Relative eccentricity: $$\overline{e} = \frac{2 \cdot e}{D_0 - d}$$ Darcy friction factor for circular cross-section: \blacksquare laminar flow regime (Re \leq 2000): Hagen-Poiseuille law $$\lambda_{circ} = \frac{64}{\text{Re}}$$ ([1] diagram 2.1) ■ turbulent flow regime (Re ≥ 4000): Filonenko and Althsul Equation $$\lambda_{circ} = \frac{1}{\left[1.8 \cdot \log(\text{Re}) - 1.64\right]^2}$$ ([1] diagramme 2.1) ■ critical flow regime (2000 < Re < 4000): interpolation between laminar and turbulent flows $$\lambda_{circ} = f(Re)$$ ([1] diagram ([1] diagram 2.1) \blacksquare all flow regimes: Correction for Darcy friction factor for annular cross-section: ■ laminar flow (Re \leq 2000): $$k_{1r} = f(d/D_0)$$ ([1] diagram 2.7) ■ turbulent flow (Re > 2000): $$k_{2r} = f(d/D_0, Re)$$ ([1] diagram 2.7) Correction for Darcy friction factor for axis eccentricity: ■ laminar flow (Re \leq 2000): $$B_1 = f(d/D_0)$$ ([1] diagram 2.7) ■ turbulent flow (Re > 2000): $$k'_{ell} = f(\overline{e}, d/D_0)$$ ([1] diagram 2.7) Darcy friction factor for annular cross-section: ■ laminar flow (Re \leq 2000): $$\lambda_{annu} = \lambda_{circ} \cdot k_{1r} \cdot B_{1}$$ ■ turbulent flow (Re > 2000): $$\lambda_{annu} = \lambda_{circ} \cdot k_{2r} \cdot k'_{ell}$$ Total correction for Darcy friction factor for noncircular cross-section: ■ laminar flow (Re \leq 2000): $$k_{non-c} = k_{1r} \cdot B_1$$ \blacksquare turbulent flow (Re > 2000): $$k_{non-c} = k_{2r} \cdot k'_{ell}$$ Pressure loss coefficient (based on the mean pipe velocity): $$\zeta = \lambda_{circ} \cdot k_{non-c} \cdot \frac{I}{D_h}$$ ([1] diagram 2.7) Total pressure loss (Pa): $$\Delta P = \zeta \cdot \frac{\rho \cdot {w_0}^2}{2}$$ ([1] diagram 2.7) Total head loss of fluid (m): $$\Delta H = \zeta \cdot \frac{{w_0}^2}{2 \cdot g}$$ ``` Hydraulic power loss (W): ``` $$Wh = \Delta P \cdot Q$$ ## Symbols, Definitions, SI Units: ``` Annulus outer diameter (m) Do d Annulus inner diameter (m) D_h Hydraulic diameter (m) F_0 Cross-sectional area (m²) Q Volume flow rate (m³/s) Wo Mean velocity (m/s) Mass flow rate (kg/s) G Pipe length (m) ٧ Fluid volume in the pipe (m³) Fluid mass in the pipe (kg) M Re Reynolds number () Pipes eccentricity (m) e Relative eccentricity () e Darcy friction factor for circular cross-section () \lambda_{circ} K_{1r} Correction for noncircular cross-section (laminar regime) () K_{2r} Correction for noncircular cross-section (turbulent regime) () Βı Correction for eccentricity (laminar regime) () K'ell Correction for eccentricity (turbulent regime) () \lambda_{\text{annu}} Darcy friction factor for annular cross-section () Correction for Darcy friction factor for noncircular cross-section () Knon-c Pressure loss coefficient (based on the mean pipe velocity) () \Delta P Total pressure loss (Pa) Total head loss of fluid (m) \Delta H Wh Hydraulic power loss (W) Fluid density (kg/m³) ρ Fluid kinematic viscosity (m²/s) ν Gravitational acceleration (m/s²) g ``` ### Validity range: - any flow regime: laminar, critical and turbulent (Re \leq 10⁸) note: for Reynolds number lower than 10⁴ or greater than 10⁷, the correction factor 'k2r' is extrapolated - stabilized flow ### Example of input data and results: ### References: [1] Handbook of Hydraulic Resistance, 3rd Edition, I.E. Idelchik (2008) HydrauCalc Edition: June 2019 © François Corre 2019