

Symmetric dividing radiused-edged T-junction Circular Cross-Section (Pipe Flow - Guide)

Model description:

This model of component calculates the minor head loss (pressure drop) generated by the flow in a symmetric dividing radiused-edged T-junction with three legs of equal area.

The head loss by friction in the inlet and outlet piping is not taken into account in this component.

Model formulation:

Cross-sectional area of the three branches (m²):

$$A_1 = \pi \cdot \frac{d_1^2}{4}$$

$$A_2 = \pi \cdot \frac{d_2^2}{4}$$

$$A_3 = \pi \cdot \frac{{d_3}^2}{4}$$

with
$$\boxed{d_1 = d_2 = d_3 = d}$$

Volume flow rate in the common branch (m³/s):

$$\mathbf{Q}_1 = \mathbf{Q}_2 + \mathbf{Q}_3$$

Mean velocity in the common branch (m/s):

$$V_1 = \frac{Q_1}{A_1}$$

$$V_2 = \frac{Q_2}{A_2}$$

Mean velocity in the right branch (m/s):

$$V_3 = \frac{Q_3}{A_3}$$

Mass flow rate in the common branch (kg/s):

$$W_1 = Q_1 \cdot \rho_m$$

Mass flow rate in the left branch (kg/s):

$$W_2 = Q_2 \cdot \rho_m$$

Mass flow rate in the right branch (kg/s):

$$W_3 = Q_3 \cdot \rho_m$$

Reynolds number in the common branch:

$$NRe_1 = \frac{V_1 \cdot d_1}{v}$$

Reynolds number in the left branch:

$$NRe_2 = \frac{V_2 \cdot d_2}{v}$$

Reynolds number in the right branch:

$$NRe_3 = \frac{V_3 \cdot d_3}{V}$$

Pressure loss coefficient of the left branch:

Coefficient based on mean velocity in the common branch:

$$\boxed{ K_{12_1} = 0.59 + \left(1.18 - 1.84 \cdot \sqrt{\frac{r}{d}} + 1.16 \cdot \frac{r}{d} \right) \cdot \frac{w_2}{w_1} - \left(0.68 - 1.04 \cdot \sqrt{\frac{r}{d}} + 1.16 \cdot \frac{r}{d} \right) \cdot \frac{w_2^2}{w_1^2} }$$
 equation 16.16)

Coefficient based on mean velocity in the left branch:

$$K_{12_{2}} = 0.59 \cdot \frac{w_{1}^{2}}{w_{2}^{2}} + \left(1.18 - 1.84 \cdot \sqrt{\frac{r}{d}} + 1.16 \cdot \frac{r}{d}\right) \cdot \frac{w_{1}}{w_{2}} - 0.68 + 1.04 \cdot \sqrt{\frac{r}{d}} - 1.16 \cdot \frac{r}{d}$$
([1]

equation 16.17)

Pressure loss coefficient of the right branch:

Note: for the right branch, the formulas are the same as those of the left branch, with subscript 3 instead of subscript 2.

Coefficient based on mean velocity in the common branch:

$$K_{13_{1}} = 0.59 + \left(1.18 - 1.84 \cdot \sqrt{\frac{r}{d}} + 1.16 \cdot \frac{r}{d}\right) \cdot \frac{w_{3}}{w_{1}} - \left(0.68 - 1.04 \cdot \sqrt{\frac{r}{d}} + 1.16 \cdot \frac{r}{d}\right) \cdot \frac{w_{3}^{2}}{w_{1}^{2}}$$
([1]

equation 16.16)

Coefficient based on mean velocity in the left branch:

$$K_{13_3} = 0.59 \cdot \frac{w_1^2}{w_3^2} + \left(1.18 - 1.84 \cdot \sqrt{\frac{r}{d}} + 1.16 \cdot \frac{r}{d}\right) \cdot \frac{w_1}{w_3} - 0.68 + 1.04 \cdot \sqrt{\frac{r}{d}} - 1.16 \cdot \frac{r}{d}$$
([1]

equation 16.17)

Pressure loss in the left branch (Pa):

$$\Delta P_{12} = K_{12_1} \cdot \frac{\rho_m \cdot W_1^2}{2}$$

Pressure loss in the right branch (Pa):

$$\Delta P_{13} = K_{13_1} \cdot \frac{\rho_m \cdot W_1^2}{2}$$

Head loss of fluid in the left branch (m):

$$\Delta H_{12} = K_{12_1} \cdot \frac{w_1^2}{2 \cdot g}$$

Head loss of fluid in the right branch (m):

$$\Delta H_{13} = K_{13_1} \cdot \frac{w_1^2}{2 \cdot g}$$

Hydraulic power loss in the left branch (W):

$$Wh_{12} = \Delta P_{12} \cdot Q_2$$

Hydraulic power loss in the right branch (W):

$$Wh_{13} = \Delta P_{13} \cdot Q_3$$

Symbols, Definitions, SI Units:

- d Inside diameter of the three branches (m)
- d_1 Diameter of the common branch (m)
- d₂ Diameter of the left branch (m)

 d_3 Diameter of the right branch Cross-sectional area of the common branch (m²) A_1 A_2 Cross-sectional area of the left branch (m²) Cross-sectional area of the right branch (m²) A_3 Q_1 Volume flow rate in the common branch (m³/s) V_1 Mean velocity in the common branch (m/s) Q_2 Volume flow rate in the left branch (m³/s) V2 Mean velocity in the left branch (m/s) \mathbf{Q}_3 Volume flow rate in the right branch (m³/s) V٦ Mean velocity in the right branch (m/s) Mass flow rate in the common branch (kg/s) W₁ Mass flow rate in the left branch (kg/s)W2 Mass flow rate in the right branch (kg/s)**W**3 NRe₁ Reynolds number in the common branch () NRe₂ Reynolds number in the left branch () NRe₃ Reynolds number in the right branch () Rounded radius (m) K_{121} Pressure loss coefficient of the left branch (based on mean velocity in the common branch) () Pressure loss coefficient of the right branch (based on mean velocity in K_{131} the common branch) () Pressure loss coefficient of the left branch (based on mean velocity in K_{122} the left branch) () K_{133} Pressure loss coefficient of the right branch (based on mean velocity in the right branch) () Pressure loss in the left branch (Pa) ΔP_{12} ΔP_{13} Pressure loss in the right branch (Pa) Head loss of fluid in the left branch (m) ΔH_{12} ΔH_{13} Head loss of fluid in the right branch (m) Wh₁₂ Hydraulic power loss in the left branch (W) Wh₁₃ Hydraulic power loss in the right branch (W) Fluid density (kg/m³) ρ_{m} Fluid kinematic viscosity (m²/s) ν

Validity range:

g

- turbulent flow regime (NRe₁ \geq 10⁴)
- three legs of equal area $(d_1 = d_2 = d_3)$
- relative radius of the round (r/d) lower than or equal to 0.3d

Gravitational acceleration (m/s^2)

• ratio of mass flow rates (w_2 / w_1) and (w_3 / w_1) between 0.2 and 0.8 note: for mass flow ratios less than 0.2 or greater than 0.8, pressure loss coefficients are extrapolated

Example of application:

References:

[1] Pipe Flow: A Practical and Comprehensive Guide. Donald C. Rennels and Hobart M. Hudson. (2012)

HydrauCalc Edition: September 2019

© François Corre 2019