

Model description:

This model of component calculates the minor head loss (pressure drop) generated by the flow in a symmetric combining radiused-edged T-junction with three legs of equal area.

The head loss by friction in the inlet and outlet piping is not taken into account in this component.

Model formulation:

Cross-sectional area of the three branches $\left(m^{2}\right)$:
$\mathrm{A}_{1}=\pi \cdot \frac{D_{1}^{2}}{4}$
$\mathrm{A}_{2}=\pi \cdot \frac{D_{2}^{2}}{4}$
$\mathrm{A}_{3}=\pi \cdot \frac{D_{3}{ }^{2}}{4}$
with $D_{1}=D_{2}=D_{3}=D$

Volume flow rate in the common branch ($\mathrm{m}^{3} / \mathrm{s}$):

$$
Q_{3}=Q_{1}+Q_{2}
$$

Mean velocity in the left branch (m / s):

$$
U_{1}=\frac{Q_{1}}{A_{1}}
$$

Mean velocity in the right branch (m / s):

Mean velocity in the common branch $(\mathrm{m} / \mathrm{s})$:

$$
U_{3}=\frac{Q_{3}}{A_{3}}
$$

Mass flow rate in the left branch (kg/s):

$$
G_{1}=Q_{1} \cdot \rho
$$

Mass flow rate in the right branch (kg / s):

$$
G_{2}=Q_{2} \cdot \rho
$$

Mass flow rate in the common branch (kg / s):

$$
G_{3}=Q_{3} \cdot \rho
$$

Reynolds number in the left branch:

$$
\mathrm{Re}_{1}=\frac{U_{1} \cdot D_{1}}{v}
$$

Reynolds number in the right branch:

$$
\mathrm{Re}_{2}=\frac{U_{2} \cdot D_{2}}{v}
$$

Reynolds number in the common branch:

$$
\mathrm{Re}_{3}=\frac{U_{3} \cdot D_{3}}{v}
$$

Pressure loss coefficient of the left branch (based on mean velocity in the common branch):

Pressure loss coefficient of the right branch (based on mean velocity in the common branch):

Symmetric combining radiused-edged T-junction
(with legs of equal area) Coefficient of local resistance (K23) MILLER - Figure $13.16(\operatorname{Re}=1 \mathrm{e} 6)$

Pressure loss in the left branch (Pa):

$$
\Delta P_{13}=K_{13} \cdot \frac{\rho \cdot U_{3}^{2}}{2}
$$

[^0]Pressure loss in the right branch (Pa):

$$
\begin{equation*}
\Delta P_{23}=K_{23} \cdot \frac{\rho \cdot U_{3}^{2}}{2} \tag{1}
\end{equation*}
$$

Head loss of fluid in the left branch (m):

$$
\Delta H_{13}=K_{13} \cdot \frac{U_{3}^{2}}{2 \cdot g}
$$

Head loss of fluid in the right branch (m):

$$
\Delta H_{23}=K_{23} \cdot \frac{U_{3}^{2}}{2 \cdot g}
$$

Hydraulic power loss in the left branch (W):

$$
W h_{13}=\Delta P_{13} \cdot Q_{1}
$$

Hydraulic power loss in the right branch (W):

$$
W h_{23}=\Delta P_{23} \cdot Q_{2}
$$

Symbols, Definitions, SI Units:

$D \quad$ Inside diameter of the three branches (m)
$D_{1} \quad$ Diameter of the left branch (m)
$D_{2} \quad$ Diameter of the right branch (m)
$D_{3} \quad$ Diameter of the common branch (m)
$A_{1} \quad$ Cross-sectional area of the left branch $\left(m^{2}\right)$
$A_{2} \quad$ Cross-sectional area of the right branch (m^{2})
$A_{3} \quad$ Cross-sectional area of the common branch $\left(\mathrm{m}^{2}\right)$
Q1 Volume flow rate in the left branch ($\mathrm{m}^{3} / \mathrm{s}$)
$U_{1} \quad$ Mean velocity in the left branch (m / s)
Q2 Volume flow rate in the right branch ($\mathrm{m}^{3} / \mathrm{s}$)
$U_{2} \quad$ Mean velocity in the right branch (m / s)
Q3 Volume flow rate in the common branch ($\mathrm{m}^{3} / \mathrm{s}$)
$U_{3} \quad$ Mean velocity in the common branch (m / s)
$G_{1} \quad$ Mass flow rate in the left branch (kg/s)
G_{2} Mass flow rate in the right branch (kg / s)
$G_{3} \quad$ Mass flow rate in the common branch (kg/s)
$\mathrm{Re}_{1} \quad$ Reynolds number in the left branch ()
$\mathrm{Re}_{2} \quad$ Reynolds number in the right branch ()
$\mathrm{Re}_{3} \quad$ Reynolds number in the common branch ()

r	Rounded radius (m)
K_{13}	Pressure loss coefficient of the left branch (based on mean velocity in the common branch) ()
K_{23}	Pressure loss coefficient of the right branch (based on mean velocity in the common branch) ()
$\Delta \mathrm{P}_{13}$	Pressure loss in the left branch (Pa)
$\Delta \mathrm{P}_{23}$	Pressure loss in the right branch (Pa)
ΔH_{13}	Head loss of fluid in the left branch (m)
$\Delta \mathrm{H}_{23}$	Head loss of fluid in the right branch (m)
Whi3	Hydraulic power loss in the left branch (W)
Wh23	Hydraulic power loss in the right branch (W)
ρ	Fluid density ($\mathrm{kg} / \mathrm{m}^{3}$)
v	Fluid kinematic viscosity ($\mathrm{m}^{2} / \mathrm{s}$)
9	Gravitational acceleration ($\mathrm{m} / \mathrm{s}^{2}$)

Validity range:

- turbulent flow regime $\left(\operatorname{Re}_{3} \geq 10^{5}\right)$
- three legs of equal area $\left(D_{1}=D_{2}=D_{3}\right)$
- relative radius of the round (r / D) lower than or equal to 0.5D

Example of application:

Has HydrauCalc 2019a - [Symmetric combining sharp-edged T -junction - MILLER (2nd Ed.)]

References:

[1] Internal Flow System, Second Edition, D.S. Miller (1990)
HydrauCalc
Edition: September 2019
© François Corre 2019

[^0]: ([1] equation 13.1)

